
Introduction Subobjects: Corrigendum and adendum Differential bundles Differential bundles in affine schemes Other structures Conclusion

Algebraic geometry and Tangent categories
(part two)

Geoff Cruttwell, Mount Allison University
(Based on joint work with J.S. Lemay)

@cat seminar, March 15th, 2022



Introduction Subobjects: Corrigendum and adendum Differential bundles Differential bundles in affine schemes Other structures Conclusion

From last time...

Main idea: looking at the tangent category structure of

(affine schemes over R) = cAlgop
R

where recall:

A tangent category is a category X where each object has an
associated “tangent bundle”, represented axiomatically by an
endofunctor T : X −→ X equipped with certain natural
transformations

The canonical example is X = smooth manifolds, where
TM = tangent bundle of M

We’re focusing on X = cAlgop
R where

TA := Symmetric A-algebra of (Kahler differentials of A over R)

For example, if A = R[x , y ]/(y2 − x3 − x2),

TA = A[x , y , dx , dy ]/(y2 − x3 − x2, 2ydy − 3x2xdx − 2xdx)
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Today

In any tangent category, one can define many analogs of ideas from
differential geometry. What do these look like in this example?

Today we’ll focus on differential objects and differential bundles
(the analogs of vector spaces and vector bundles).

We’ll also take a quick look at vector fields and de Rham
cohomology.

However, first I need to start with a quick corrigendum and
addendum. Last time I stated that in cAlgop

R ,

quotients of algebras = inclusions of sub varieties/schemes

which is definitely not true: quotients are only some of the
inclusions.

Finally, even if you don’t particularly care about algebraic geometry or
tangent categories, we’ll see a result which is of independent interest: a
characterization of the opposite of the category of R-modules.
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Quotients ⊊ Subobjects in cAlg op
R

Quotients give important examples of subobjects in cAlgop
R , but they are

not all of them.

Another very important class of subobjects are localizations.

Recall that the localization of a ring/algebra A at a multiplicative
set S , A[S−1], adds inverses for every element of S .

For example, if S is the multiplicative set generated by x in R[x ],
R[x ][S−1] = R[x , x−1] is the ring of Laurent polynomials (in which
all powers of x are invertible).

For any S , the canonical algebra map A −→ A[S−1] is an
epimorphism (!), hence a monomorphism A[S−1] −→ A in cAlgop

R .

What do these subobjects look like?
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Localization examples

We saw that the (categorical) points of taking R[x , y ] and quotienting by
the ideal generated by y2 − x3 − x2 are the solutions to y2 − x3 − x2 = 0:

What happens if instead we localize R[x , y ] at the multiplicative set S
generated by y2 − x3 − x2?

Now its categorical points in cAlgop
R are cAlgR maps

R[x , y ][S−1] −→ R

Again, such a map is determined by where it sends x and y , with
now the only restriction being that wherever x and y get sent,
y2 − x3 − x2 must be invertible.

So since our base is a field, this set is {(x , y) : y2 − x3 − x2 ̸= 0},
ie., everything not on the above variety!

So we can think of localizations as giving open subobjects in cAlgop
R .
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Localizations and tangent bundles

And in fact thinkig of localizations as open subsets works exactly as one
would hope with the tangent bundle:

Recall that for U an open subset of Rn, TU = U × Rn; that is,

TU �
� //

p

��

TRn

p

��
U �
� // Rn

is a pullback (in smooth manifolds).
The same is true for localizations: if S is a multiplicative subset of
A, then

T (A[S−1]) �
� //

p

��

TA

p

��
A[S−1] �

� // A

is a pullback (in affine schemes = cAlgop
R ).

That is, tangent vectors at any point of an open subset are exactly
the tangent vectors from the space in which its contained.
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Vector spaces/bundles in a tangent category?

How can we talk about vector spaces and more generally vector bundles
in a tangent category?

The axioms do not assume any “object of scalars” (seemingly
necessary for vector spaces).

The axioms do not assume any “open subsets” (seemingly necessary
for the local triviality of vector bundles).

However, we shall see that we can characterize both vector spaces and
vector bundles by canonical “lift” maps to their tangent bundles.
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Vector spaces I: lift map λ

What special properties does a vector space V have in the tangent
category of smooth manifolds?

It has a zero and an addition; that is, there are maps

ζ : 1 −→ V , σ : V × V −→ V

so that (V , ζ, σ) is a commutative monoid.

More importantly, however, every v ∈ V gives a unique tangent
vector λ(v) at 0, and all tangent vectors at 0 are of this form.

This gives a map λ : E −→ TE .
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Vector spaces II: lift map µ

More generally, for any v ∈ V , every tangent vector at v is uniquely
represented by some v ′ ∈ V ; this gives an isomorphism

µ : E × E −→ TE

λ is a special case of µ: λ(v) = µ(0, v).

But in fact µ can also be constructed from λ via

µ = ⟨π00, π1λ⟩T (σ)1

Our definition of “vector space” will assume a λ and construct µ
from it as above (axioms are easier to state using λ instead of µ).

1Writing composition in diagrammatic order.
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Differential objects

Assume (X,T ) is a tangent category with finite products which are
preserved by T .

Definition

A differential object consists of a commutative monoid (A, ζ, σ)
together with a “lift” map λ : E −→ TE (satisfying various coherences
with the tangent structure) and such that

E × E
µ := ⟨π00, π1λ⟩T (σ)−−−−−−−−−−−−−→ TE

is an isomorphism.

Note: This is a alternative axiomatization to the one presented in
(Cockett and Cruttwell, 2014).

Example

In X = smooth manifolds, differential objects = vector spaces.
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Vector bundles I

A vector bundle is a map q : E −→ M such that each fibre

q−1(m) = {e ∈ E : q(e) = m}

is a vector space (plus a local triviality condition).

The addition and zero in each fibre can be represented as asking for
a commutative monoid in X/M.
In particular, this gives a section ζ : M −→ E of q, and a “fibred
addition” σ : E ×M E −→ E .
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Vector bundles II: Lifts

A vector bundle will again have lift maps

λ : E −→ TE and µ : E ×m E −→ TE .

The only difference is that not all TE will be in the image of µ: eg.,
w is not in the image of µ:

But we can recognize which ones should be in the image of µ: they are
exactly the vertical tangent vectors: those w for which T (q)(w) = 0
(they “cast no shadow”).
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Differential bundles

Definition (Cockett/Cruttwell 2017)

A differential bundle over M is a commutative monoid in X/M; that is,

(q : E −→ M, ζ : M −→ E , σ : E ×M E −→ E )

together with a “lift” map λ : E −→ TE (satisfying various coherences
with the tangent structure) such that if µ is defined as

E ×M E
µ := ⟨π00, π1λ⟩T (σ)−−−−−−−−−−−−−→ TE

then the following diagram is a pullback:

E ×M E
µ //

π0q

��

TE

T (q)

��
M

0M
// TM

(Ie., every vertical tangent vector is represented by a (e, e′) ∈ E ×M E .)
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Differential bundle properties

Differential bundles in a tangent category (X,T ) enjoy many useful
properties:

For every M ∈ X, the tangent bundle pM : TM −→ M is a
differential bundle (essentially axiomatically - the axioms ask for a
lift map ℓ : TM −→ T 2M...)
If q : E −→ M is a differential bundle and

E ′ //

q′

��

E

q

��
M ′ // M

is a pullback preserved by T , then q′ : E ′ −→ M ′ is a differential
bundle.
If q : E −→ M is a differential bundle, then Tq : TE −→ TM is a
differential bundle.
Differential bundles over a terminal object 1 are exactly differential
objects.

There is a category of differential bundles over M, where the maps are
bundle maps which preserve the lift.
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Differential bundles in smooth manifolds?

Vector bundles q : E −→ M are differential bundles, but they also satisfy
a local triviality condition: there is a covering of M by open sets
{Ui : i ∈ I} such that for each i , there is some n so that

q−1(Ui ) ∼= Ui × Rn

In 2021, Ben MacAdam showed that the implication goes the other way
as well - every differential bundle in the tangent category of smooth
manifolds is a (smooth) vector bundle!

This is remarkable as it tells us that the existence of the “lift” forces
not only a scalar action in each fibre (not assumed) but also the
local triviality condition above.

The maps work out as well: differential bundles maps (those
preserving the lift) = vector bundle maps.

This gives a completely new way to think about smooth vector
bundles and their morphisms.
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Summing up

So, in the tangent category of smooth manifolds:

Differential objects = Vector spaces

Differential bundles = (Smooth) Vector bundles

Differential objects/bundles are generally very important in any tangent
category.

So what are they in affine schemes??
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Tangent bundles as differential bundles

As a starting point, every tangent bundle is a differential bundle, so for
any A ∈ cAlgop

R

TA := Symmetric A-algebra of (Kahler differentials of A over R)

is a differential bundle over A, with lift structure λ : TA −→ T 2A given by
the algebra map λ′ : T 2A −→ TA defined by

a 7→ a

da 7→ 0

d ′a 7→ 0

d ′da 7→ da

But actually the above works for the symmetric algebra of any module
over A, not just the Kahler differentials over A!
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Modules as differential bundles

Definition

If M is an A-module, the symmetric algebra of M, Sym(M), is the free
A-algebra generated by M (so freely generated by a ∈ A,m ∈ M).

Theorem

For A ∈ cAlgop
R , for any A-module M, Sym(M) is a differential bundle

over A, with lift map λ given by the algebra map

λ′ : T (Sym(M)) −→ Sym(M)

defined by
a 7→ a

m 7→ 0

da 7→ 0

dm 7→ m
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Differential bundles as modules

But we can go the other way as well! Given a diffential bundle q : E
−→ A over A, its lift λ : E −→ TE corresponds to an algebra map

λ′ : TE −→ E

where TE is generated by symbols e, de, and we define M as the image
of the de’s by λ′:

M := Imd(λ) := {λ′(de) : e ∈ E}

then one can show that M is indeed an A-module.

It is immediate that if you start with a module M, build its
differential bundle via Sym then go back as above, you recover M.

Conversely, if you start with a differential bundle E , build its module
as above, then go back via Sym, you recover E : but this uses in a
crucial way the pullback property of the lift!
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Differential bundles and modules

So we have a bijection on objects

(Differential bundles over A) ⇔ (Modules over A)

given by
Sym(M) ⇐ M

(E , λ) ⇒ Imd(λ)

Interesting side note: Grothendieck called the construction Sym(M)
“the vector bundle associated to M”2! This fell out of favour since the
result is not something locally trivial...perhaps what he really had in mind
was something like differential bundles (?).

2EGA II, section 1.7
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Differential bundles ∼= modulesop

But what about the maps? Something interesting happens:

An A-module morphism f : M −→ M ′ gives a cAlgR morphism

Sym(f ) : Sym(M) −→ Sym(M ′)

ie., a map in cAlgop
R

Sym(M ′) −→ Sym(M)

So we are actually getting a contravariant functor!

Theorem

For A ∈ cAlgop
R , there is an equivalence of categories

(Diff. bundles over A) ∼= (A-modules)op

I don’t know of another characterization of A-modulesop...
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Aside: Slice tangent categories

In might seem a bit strange that we get the same differential bundles if
we view A as an R-algebra or as some other R ′-algebra. But in fact all
these tangent structures are just slices of a single tangent structure:

Recall that cAlgR = R/cRing

So cAlgop
R = (cRingop)/R

In general, if (X,T ) is a tangent category, for any M, X/M is again
a tangent category

And the tangent structure of cAlgop
R = (cRingop)/R is indeed the

slice of the tangent structure on (cRing)op = cAlgop
Z

So since differential bundles are a structure “over” an A, it’s not
surprising their structure is the same in different slices, and really all
comes from a single tangent structure on

Affine schemes = cRingop = cAlgop
Z
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Summing up differential bundles

To sum up:

In smooth manifolds, differential bundles = vector bundles

In affine schemes, differential bundles = modulesop

Does this make sense?

Algebraic geometers often speak of modules (or, in the more general
case of schemes, quasi-coherent sheaves of modules) as an
important supporting structure that plays a role like that of vector
bundles for smooth manifolds.

More generally, the opposite of “algebraic” categories are
“geometric” categories, so it makes sense that the opposite of
R-modules is “geometric”.
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Vector fields in a tangent category

A vector field is a (smooth) choice of tangent vector at each point. More
precisely:

Definition (Rosický 1984)

If (X,T ) is a tangent category, a vector field on an object M in X is a
map χ : M −→ TM which is a section of pM , ie.,

M
χ−−→ TM

pM−−−→ M

is the identity on M.

A non-trivial vector field on the sphere:
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Vector fields in cAlg op
R

What is a vector field on an affine scheme A ∈ cAlgop
R ?

It is an algebra map χ : TA −→ A, so is determined by where it sends
the a and da elements.

But since it is a section of the projection, it sends a to a. So it is
entirely determined by where it sends da; let D(a) := χ(da).

Then
D(ab) = χ(d(ab)) = χ(adb + bda) =

χ(a)χ(db) + χ(b)χ(da) = aD(b) + bD(a)

and D is R-linear.

This is precisely the requirements of a derivation: a R-linear map
D : A −→ A which satisfies the Leibniz rule.

Therefore,
Vector fields on A = Derivations on A

Another nice connection...
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Tangent category de Rham cohomology

In a tangent category (X,T ), for every differential object E , there are
(two) associated cohomologies:

Definition (Cruttwell/Lucyshyn-Wright 2018)

For an object M ∈ X and a differential object E , a singular form on M
(with values in E) is a map ω : T nM −→ E which is suitably multilinear
and alternating. Call the set of such maps Ωn(M;E ).

Theorem (Cruttwell/Lucyshyn-Wright 2018)

There is a cochain complex

Ω0(M;E )
d−−→ Ω1(M;E )

d−−→ Ω2(M;E ) . . .

which we will call here the tangent de Rham complex.

Example

In the tangent category of smooth manifolds, with E = R, the tangent de
Rham complex is the (ordinary) de Rham complex.
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Tangent de Rham cohomology and algebraic geometry

Conjecture: In affine schemes over R,

(Tangent de Rham with values in R[x ]) = (algebraic de Rham)

(we checked the lower terms...it seems to be just a matter of finding a
clean way to write everything down...)

What about other differential objects?

If R is a field, the differential objects are all R-vector spaces;
wouldn’t give much new information.

But if R is not a field, there are many other possible differential
objects (eg., non-free modules)...could potentially give other
interesting “differential” cohomology theories for (affine) schemes.

There is also another cohomology theory in any tangent category (the
cohomology of “sector” forms)...still trying to understand it even in
smooth manifolds.
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Conclusions

Tons of things still to do!

Connections in a tangent category: are they the same as existing
notions? Not done much in algebraic geometry...

Curve objects? (Solutions to differential equations)

Can we define what it means for an object in tangent category to be
smooth?

Verify algebraic de Rham conjecture

Look at tangent de Rham over other differential objects: is this
related to crystalline cohomology?

And again further generalizations of this example to non-commutative
geometry by Marcello...
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