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We develop a theory of combinatorial game categories. These generalize Joyal’s category

of combinatorial games, and include many other examples, such as loopy games,

outcome lattices, and polarized game categories.

1. Introduction

In 1977, André Joyal observed that combinatorial games organized themselves into a

compact closed category (Joyal 1977). This observation was taken up by the logic com-

munity, and various models for logic were based around modified versions of the category

of combinatorial games. However, what was not apparent was whether other categories

acted like Joyal’s category of combinatorial games. That is, there was no answer to the

question: “when is a category a combinatorial game category”?

The current paper answers that question. Joyal’s category is (with a small modifica-

tion) the initial category of combinatorial games. Significantly, however, there are other

examples, many of which already occur in the combinatorial game literature. Examples

of this include the “outcome lattice”
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the “games born by day n”, “consecutive move-ban games” and a variant of “loopy”

games. Other examples occur outside of combinatorial game theory, such as the polar-

ized games of (Cockett and Seely 2007). Interestingly, not all of these combinatorial game

categories have a natural compact closed structure as the initial one does. Most free com-

binatorial game categories are not naturally compact (see remarks at the end of Section

4), and examples such as the loopy game category do not even have a natural monoidal

structure (see section 7). Thus, the analysis of combinatorial games does not rely on the

addition or subtraction of games. The existence of compact monoidal structure for the

† This work was partly supported by NSERC and PIMS.
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initial category of combinatorial games is merely a happy coincidence.

To develop a theory of combinatorial game categories, we work as in (Cockett and

Seely 2007). That is, we begin by developing a proof theory for combinatorial games,

then describe the categorical semantics for this proof theory. This approach then brings

together three disciplines: combinatorial game theory, proof theory, and category theory.

The advantange of this multi-faceted approach is that each subject gives a different per-

spective. The combinatorial game theory literature helps us understand how to work in

detail with combinatorial games. Proof theory helps us understand the tree-like interplay

between the two players of a combinatorial game. The category theory gives us alternate

models of combinatorial game theory, as well as allows us to describe universal construc-

tions.

The first three sections of the paper describe these three different, but related, ap-

proaches, to combinatorial game theory. In the first section, we give a brief overview

of combinatorial games. In the next section, we describe the syntax for combinatorial

games. In the third section, we give a categorical semantics for the proof theory syntax,

and show that as mentioned above, there are a number of interesting examples.

Following this, we relate the polarized game categories of Cockett and Seely (Cockett

and Seely 2007) and combinatorial game categories by showing that each polarized game

category gives rise to a combinatorial game category. (Unfortunately, this construction is

not universal.) In particular, the polarized game category of finite Abramsky-Jagadeesan

games (Abramsky 1997) gets sent to the combinatorial game category of “consecutive

move-ban games”, which have found applications in misère game theory (Ottaway 2009).

This provides a potential source of further research, as misère game theory, in which the

last player to move loses, is generally considered much more difficult than “normal play”

game theory, in which the last player to move wins (Plambeck and Siegel 2008).

Next, we provide an application of the theory, by describing idempotents and splittings

in categories of combinatorial games. This relates to the notions of “dominated” and “re-

versible” options in combinatorial game theory, and provides an alternative approach to

the “canonical” form of a game.

Finally, we investigate the idea of “loopy” games. In a loopy game, one is allowed to

return to a previous board position. Thus, there is a potential for infinite play in a loopy

game. Naturally, this can lead to a number of problems. In particular, the question of

who wins such a game and how one can compose strategies between such games. We

investigate three different approaches to this problem, showing that one solution in par-

ticular has well-behaved categorical properties. In essence, adding loopy games to regular

games is the same as adding initial and terminal algebras for various functors.

We hope that this paper will be the starting point for further interaction between

combinatorial game theory and other areas of mathematics.
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2. Brief Game Theory Overview

Informally, a combinatorial game has the following properties: (Albert et al. 2007, p. xi)

— it is played between two players (usually described as Left and Right) who alternate

taking turns,

— it has a clearly defined ruleset, stating what moves players can make,

— both players have complete information, and there are no are sources of randomness,

— from each position, only a finite number of moves is available for each player, and the

game ends after a finite number of moves.

For determining who wins or loses the game, one of two criteria is generally used: either

the last player to move wins (“normal” play) or the last player to move loses (“misère”

play). Misère games are generally much harder to analyze than normal-play games (Plam-

beck and Siegel 2008). One reason for this is that equivalence between games (defined

below) greatly reduces the number of games one has to consider in normal play. How-

ever, in misère play, the equivalence classes are often very small, making the analysis

more difficult.

In this paper, we will restrict our attention to the normal play convention. There have

been recent advances in misère play; notably the “indistinguishability quotient” construc-

tion of (Plambeck and Siegel 2008), and it would be interesting to try and understand

their construction as it relates to the ideas in this paper, but we leave this for future work.

Example 2.1. A classic example is the game of Nim. In Nim, there are a number tokens,

arranged in heaps. On each turn, a player may take any number of tokens from a single

heap. The last player to move wins.

Example 2.2. The game of Domineering is played on an m × n board. Left places

2× 1 dominoes on the board, while Right places 1× 2 dominoes. The dominoes must be

placed without overlapping any previous dominoes. Again, the last player with a legal

move wins.

Many more examples can be found in (Berlekamp et al. 2001).

To formulate a mathematical theory of such games, Conway made the following defi-

nition:

Definition 2.3. A game is a pair of finite sets of games {(gi)I |(hj)J}

One thinks of the first set (gi)I as the games which Left can move to, and the set (hj)J
as the games Right can move to.

Note that the definition is recursive. All games are generated by building the initial

game 0 := {∅|∅} (in which neither player has a move available) and then inductively

building further games whose options are games already created. So, for example, after
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0, we get the games

∗ := {0|0}, 1 := {0|∅},−1 := {∅|0}

and then games whose options are from the set {0, ∗, 1,−1}, and so on.

For example, the position in Nim with no tokens would be represented by 0. The po-

sition with a single token available would be represented by ∗ = {0|0}. An empty 2x2

board in Domineering is represented by the game {1| − 1}, as Left can move to a game

with another move available for her, and Right similarly.

There are two other useful ways to create new games from old ones. The first is by

“adding” two games together. To add two games, one essentially creates a copy of each

game, and allows players to play in one or the other game for each move. Formally, this

is given by the following definition.

Definition 2.4. Given games G = {(gi)I |(hj)J} and H = {(g′k)K |(h′l)L}, the disjunctive

sum G+H is a game given by

G+H := {(gi +H)I , (g
′
k +H)K |(G+ hj)J , (G+ hl)L}

For example, if G is the Nim game with a single heap of 5 tokens, and H the Nim game

with a single heap of 7 tokens, then a Nim game with one heap of 5 tokens and one of 7 is

the game G+H . Similarly, if G is a 2x6 board of Domineering with a single play by Left

of a 2x1 domino in the 3rd column, then G = H +K, where H is the game of Domineer-

ing with an empty 2x2 board, and K the game of Domineering with an empty 2x3 board.

Given a game, we can also interchange the roles of Left and Right:

Definition 2.5. Given a game G = {(gi)I |(hj)J}, the game −G is given by

−G := {(−hj)J |(−gi)I}

Note that the definitions of sum and negative are recursive.

Assuming perfect play on the part of each player, we assign each game G an outcome

o(G):

— o(G) = L if Left wins going first or second,

— o(G) = R if Right wins going first or second,

— o(G) = N if the first (or “next”) player wins

— o(G) = P if the second (or “previous”) player wins.

For example, if G is a game of Domineering on an empty 2x2 board, then o(G) = N ,

since after the first player makes their move, the second player has no moves left. If G is a

game of Nim with two separate heaps of one token each, then o(G) = P , since no matter

which token the first player takes, the second player can take the other one, winning the

game. The fundamental theorem of game theory (Albert et al. 2007, p. 35) states that

each game has exactly one outcome.
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If we prefer the Left player to the Right player†, then the outcomes are ordered as

follows:
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Using the notion of outcome, and the ordering given above, one can define a partial

order and an equivalence relation on the set of all games.

Definition 2.6. For games G and H , write G ≤ H if o(G+X) ≤ o(H+X) for all games

X . Similarly, say that G is equivalent to H , and write G ∼= H , if o(G +X) = o(H +X)

for all games X .

Notice that the partial ordering and equivalence relation are with respect to addition

by any other game X . The reason for this is that many games G (such as a position of

Domineering) naturally break down into a number of disjoint board positions; that is,

G =
∑

iHi. To analyze G, we would like to be able to replace each Hi with some simpler

element of its equivalence class. With the above definition of equivalence, we know that

replacing each element in this way will not affect the outcome of G; if we merely asked

that G and H are equivalent if o(G) = o(H), we would not have this.

Of course, to carry out this type of analysis, it would be helpful if each equivalence

class had a particularly simple representative. Then, to analyze a sum G+H , we would

first reduce both G and H to their simpler forms, then analyze the game. Fortunately,

such a simpler form exists.

Suppose we are given a game and, as Left, we have two options, gi and gj. Suppose

we also know that gi ≥ gj. If this case, playing perfectly, we would never choose gj. We

say that gi dominates gj , and we may as well remove that option from the game. One

can then check that the game with gj removed is equivalent (in the above sense) to the

original game.

There is another way to simplify a game G. Suppose Right moves to some game hi,

and Left has some particular option of hi, h
L
i that is so good that she always moves to

it, regardless of what else is going on in the game. In other words, hLi ≥ G. In this case,

we say hi is reversible, and we may as well replace hi with the Right options of hLi , since

Left will automatically move to hLi if Right moves to hi.

The formal definitions of dominated and reversible options are as follows.

Definition 2.7. For a game G = {(gi)I |(hj)J}, say that gi is a dominated Left option if

there exists some gi′ such that gi′ ≥ gi. Say that hj is a dominated Right option if there

† This is the standard convention in game theory.
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exists some hj′ such that hj′ ≤ hj.

Say that hj is a reversible Right option if it has some Left option hLj such that hLj ≥ G.

Say that gi is a reversible Left option if it has some Right option gRi such that gRi ≤ G.

By removing dominated options, and “reversing” reversible options, we arrive at the

simplest, “canonical form” of a game.

Definition 2.8. Say that G is in canonical form if it has no dominated or reversible

options, and each of its options are in canonical form.

Each game has a unique canonical form to which it is equivalent (Albert et al. 2007, p.

81-82).

Before discussing our approach to combinatorial games, we need to discuss one further

bit of structure, discovered by André Joyal (Joyal 1977). Joyal found that the poset of

games actually extends to a full category of games. An alternate form of the ≤ relation

is the following: G ≤ H if and only if Left can win the game H − G, playing second

(Albert et al. 2007, p. 74). Taking note of this, Joyal discovered that one can extend this

idea to give a category whose objects are games. To win a game H −G as Left, playing

second, one must give a “strategy”: a series of responses to each move Right can make,

until Right has no more moves.

As an example, imagine a game of Nim with two heaps of two. If Right takes an entire

heap, Left takes the other, winning the game. If Right takes a single token from a heap,

Left takes a single token from the other. Right must then finish a heap, and Left finishes

the other heap, winning the game. Thus, Left has a strategy on this game, playing second.

Joyal takes these “strategies” as the arrows of the category.

Definition 2.9. Define a category games, where:

— the objects are games {(gi)I |(hj)J},

— an arrow G //H is a winning strategy for Left playing second in the game H −G.

The identity morphism is the “copycat” or “Tweedledum and Tweedledee” strategy: for

each move that Right makes in G−G, Left copies the opposite move in the other com-

ponent (this is the strategy Left follows in the above example).

The composite of G
f1 // H and H

f2 // K is slightly more complex, it is sometimes

referred to as the “swivel chair” strategy in game theory. Suppose Right makes a move

in K. The strategy f2 then dictates a move in either K or −H . If the move is in K, we

use that move in K − G. If f2 dictates a move in −H , we then copy that move in H ,

and pretend that Right made that move in H −G. The strategy f1 then dictates a move

in either H or −G. If it is in −G, then we take that as our move in K − G. If it is in

H , then we copy that move over to −H , taking that as a Right move in K − H . This
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process must terminate, as the game H has only a finite number of moves.

The identity and composition arrows are interesting in that not only do they give a

category, but also because they describe processes which game theorists use themselves.

In addition, knowing about strategies instead of just the ordering ≤ is useful for actual

playing these games. After all, when playing a game, it is not enough to know whether

you win a given game; you need to know how to win the game, and this is given by

having a winning strategy.

Of course, all this leads one to ask the question: what is a strategy? It is useful to

know that combinatorial games form a category. However, even more useful would be

to understand the nature of the arrows in this particular category, and to see what

other categories have arrows that look like strategies. In the next section, we begin to

formalize these ideas, by describing a proof theory that describes the interaction between

second-player strategies and first-player strategies. This then leads us to a notion of

“combinatorial game category”, of which the category games is one model, but of which,

surprisingly, there are also many other models.

3. Proof Theory for Combinatorial Games

We have found that one can describe a category of games whose arrows are winning

strategies (from now on, “strategy” will always mean “winning strategy”). However, we

would like an explicit description of these strategies. With such a description in hand, we

can then see if there are other settings which act like combinatorial games. To do this,

we will begin by developing a proof theory for combinatorial games which abstractly

describes these strategies. That is, in this section, we think of a game G as a formula,

and an arrow G //H , (ie., a strategy on the game −G+H) as a proof of the assertion

“G implies H”.

The formulae of our theory will either be atoms (basic “games” for which we know no

further structure) or compound formulae of the form {(gi)I |(hj)J}. We would like terms

in our theory that will allow us to give proofs of the proposition G //H . To do this, we

must answer the question: what is a second-player strategy for Left in the game −G+H?

For each move that Right could make (either in −G or H), it consists of a good response.

What does a “response” consist of? A response is something different: a response is given

by a first-player strategy for Left, as after Right makes their move, you, as Left, are the

first player. Thus, for any move Right could make, you need a first-player strategy on

the resulting game.

Thus, to construct a proof theory for strategies, we will need another type of proof,

which corresponds to first-player strategies for Left. As we have seen above, each second-

player strategy corresponds to a number of first-player strategies, one for each possible

move for Right. What does a first-player strategy consist of? As the first player, you need

to choose a move from which you can win. What does this mean? After your move, you
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a
1a // a

atomic identity

G
f // gi

G
�σi·f // {(gi)i∈I |(hj)j∈J}

inject
hj

f // H

{(gi)i∈I |(hj)j∈J}
�πj ·f // H

project

(gi
�si // {(g′

k
)k∈K |(h′

l
)l∈L})i∈I , ({(gi)i∈I |(hj)j∈J}

�rl // h′
l
)l∈L

{(gi)i∈I |(hj)j∈J}
[(si)i∈I ,(rl)l∈L] // {(g′

k
)k∈K |(h′

l
)l∈L}

dituple

Table 1. Terms for the combinatorial game logic.

are the second player, so a first-player strategy must consist of a move, together with a

second-player strategy on the resulting game.

Thus, our proof theory will have two types of proof (corresponding to first and second

player strategies), as well as several terms. One of these terms will, from a number of

first-player strategies (“good responses”) produce a second-player strategy. We call this

“ditupling” by analogy with the categorical operations of tupling and cotupling. Suppose

we want to get a second-player strategy

{(gi)I |(hj)J} // {(g′k)K |(h′l)L}.

The possible moves that Right could make are the gi or the h′l, as we are dealing with the

negative of the first game. Thus, if we have a first-player strategy on each of the games

that results after those moves, we will have a second-player strategy. This is what the

ditupling term produces.

Two other terms will, given a second-player strategy, produce a first-player strategy

(“move to the game with that second-player strategy”), and these we call injection and

projection. If we want a first-player strategy

{(gi)I |(hj)J}
� // {(g′k)K |(h′l)L},

we can do one of two things. We can either make some move hj , and have a second-player

strategy on the resulting game (this is projection), or we could make a move g′k, and have

a second-player strategy on that game (this is injection).

Finally, we will need a term which produces the copycat strategy - that is, for any a,

we need a second-player strategy a //a; these are simply identities. Together, our terms

are given in Table 1 (note that the sets I and J are all finite sets).

Of course, the logic should have cuts - given a proof A // B and a proof B // C,
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a
f // b, b �p // c

a
�f ;p // c

m-cut
a

�p // b, b
g // c

a
�p;g // c

m-cut

a
g // b, b

g // c

a
f ;g // c

cut

Table 2. Basic cuts for the combinatorial game logic.

#

"

 

!

f ; 1 ⇒ f

1; f ⇒ f

f ′; (σi · f) ⇒ σi · (f
′; f)

(πj · f); f ′ ⇒ πj · (f ; f ′)
(σi · f); [(si)i∈I , (rl)l∈L] ⇒ f ; si

[(si)i∈I , (rl)l∈L]; (πl · f) ⇒ rl; f
[(si)i∈I , (rl)l∈L]; [(s′

k
)k∈K , (r′n)n∈N ] ⇒ [(si; [(s′k)k∈K , (r′n)n∈N ])i∈I , ([(si)i∈I , rl)l∈L]; r′n)n∈N ]

Table 3. Rewrite rules for the combinatorial game logic.

we must have a proof A // C. But this only deals with the strategies where Left is the

second player - do we have any cuts where Left is the first player? It is easy to see that

if we have first-player strategies A � //B and B � //C, then, in general, we will not get a

first-player strategy A � //C. As an example, take A and C to be the empty game, and C

to be the game of Nim with exactly one token. There are obviously first-player strategies

on −A+ B and −B + C (simply take the single token in the game B). But there is no

first-player strategy on −A+ C, as it is the empty game. Thus, we cannot ask for cuts

of the form A
� // B, B

� // C ⇒ A
� // C.

What we do have, however, is mixed cuts. If we have a first-player strategy A
� //B and

a second-player strategy B //C, we can form a first-player strategy A
� //C: simply play

the first move one is given in A
� // B, then follow the usual composite of second-player

strategies. Similarly, A // B and B � // C will give A � // C. Thus, we have three types

of cuts for our combinatorial game logic: see Table 2.

Of course, we will also need rewrite rules which describe the interaction of the cuts

with the terms of the logic: see Table 3. With the rewrites, it is easy to see that the logic

satisfies cut-elimination: every proof that uses a cut can be rewritten to a proof that does

not use cuts. Indeed, if we define the “height” of a cut to be the number of occurrences of

injection, projection, or ditupling in that cut, then any rewrite involving cuts gives cuts

with height strictly less. Thus, continually applying the rewriting rules to the terms in

a proof will always reduce to a proof without cuts. Moreover, it is also easy to see that

the logic satisfies the Church-Rosser property: if a proof has two possible rewrites, then

those themselves can be rewritten to a common proof. That is, we have:
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Proposition 3.1. The combinatorial game logic satisfies cut-elimination and the Church-

Rosser property.

Thus, the logic for combinatorial games is well-behaved.

4. Combinatorial Game Categories

With the logic of combinatorial games in hand, we can now give axioms for a combina-

torial game category. The first issue that we must deal with is the nature of the second

type of inference in the logic we described above. That is, we must have a categorical in-

terpretation of the first-player strategies for Left (the second-player strategies will be the

arrows in the category). The cuts we described above show that the first-player strate-

gies for Left give a module (otherwise known as a profunctor, or distributor) from the

category of games to itself.

Proposition 4.1. On the category games, there is a module games
�M //games, where

the module arrows G �m // H are strategies for Left, playing first.

Before we define a combinatorial game category, we describe a 2-category of “module

categories”, where a module category consists of a category equipped with an endo-

module.

Definition 4.2. Define a 2-category modcat, where

— an object is a category C equipped with an endo-module C
�M // C,

— an arrow between (C,M) and (D, N) consists of a functor C
F // D as well as a

module morphism

D D
�

N
//

C

D

F

��

C C
�M // C

D

F

��
��

eF

— a 2-cell between (F, F̃ ) and (G, G̃) consists of a natural transformation F
α //G such

that for any MX-arrow c �m // c′, we have that

Gx Gx′
�

eGm

//

Fc

Gx

α

��

Fc Fc′�eFm // Fc′

Gx′

α

��

commutes. The composition and identities are the natural ones.

We now give the definition of a combinatorial game category. It is precisely the proof

theory for combinatorial games, translated into categorical terms.

Definition 4.3. A combinatorial game category (or a cgc) consists of
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— a module category (C,M),

— for each finite set I and J , a functor CI × CJ
{−I |−J} // C (“diproduct”), with

operations

— ∀i ∈ I, gi
� //{(g′k)K |(h′l)L}, ∀l ∈ L, {(gi)I |(hj)J}

� //h′l ⇒ {(gi)I |(hj)J} //{(g′k)K |(h′l)L}

(“ditupling”),

— hi // H ⇒ {(gi)I |(hj)J}
� // H (“injection”),

— G // g′k ⇒ G � // {(g′k)K |(h′l)L} (“projection”).

— and coherence equations, which are the last five rewrite rules for the combinatorial

game logic.

Say that a combinatorial game category is a combinatorial game lattice if, between any

two objects, there is at most one C-arrow, and at most one M -arrow.

An alternative form of the coherence equations is given by asking that the ditupling

be a natural equivalence

(gi
�si // {(g′k)k∈K |(h′l)l∈L})i∈I , {(gi)i∈I |(hj)j∈J}

�rl // h′l)l∈L

{(gi)i∈I |(hj)j∈J}
[(si)i∈I ,(rl)l∈L] // {(g′k)k∈K |(h′l)l∈L}

dituple

and that the final rewrite rule is satisfied.

Definition 4.4. Define a 2-category cgc, where

— an object is a combinatorial game category,

— an arrow (combinatorial game functor) is a module morphism which preserves diprod-

ucts up to isomorphism, and preserves projections, injections, and ditupling exactly,

— a 2-cell is a module natural transformation.

Obviously, the category games will be an example of a combinatorial game category.

Before we get into other examples, we show how to build a free combinatorial game

category out of an arbitrary module category.

Proposition 4.5. There is a forgetful 2-functor modcat
U // cgc which has a left 2-

adjoint F , which constructs the free combinatorial game category based on a module

category.

Proof. Given the definitions of modcat and cgc, it is obvious that forgetting the com-

binatorial game structure gives a 2-functor.

Given a module category (C,M), we inductively define a cgc F (C,M) as follows:

— the objects are those of M , together with objects {(gi)i∈I |(hj)j∈J}, where the gi and

hj are objects of F (C,M),

— the arrows are those of C, together with arrows

{(gi)i∈I |(hj)j∈J}
[(si)i∈I ,(rl)l∈L] // {(g′k)k∈K |(h′l)l∈L}
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for cross-arrows

(gi
�si // {(g′k)k∈K |(h′l)l∈L})i∈I , {(gi)i∈I |(hj)j∈J}

�rl // h′l)l∈L,

— the cross-arrows are those of M , together with cross-arrows

a
�σi·f // {(gi)i∈I |(hj)j∈J}

for an arrow a
f // gi, and

{(gi)i∈I |(hj)j∈J}
�πj ·f // a

for an arrow hj
f // a.

In addition, we quotient out the arrows and cross-arrows by the equivalence relations

generated by the conversion relations for the type theory. This is well-defined as the

term language has cut-elimination and satisfies Church-Rosser.

The unit of the adjunction is the inclusion from (C,M) to F (C,M). If we have a

module functor C
f // U(D), we can define a pcg functor F (C)

f̄ // D which acts as f

does on the objects of C, and takes the constructed diproducts in F (C) to the chosen

diproducts in D. We can similarly extend module natural transformations. It is then easy

to check that we have a 2-adjunction.

Example 4.6. The free game category on the empty module category is essentially

games, as described above. The only difference is that in this category, the options of

the game are a list, rather than a set, so that, for example, the objects {g, g|h} and {g|h}

are distinct. This free game category will be the initial object in the category cgc, and

hence for any other combinatorial game category C, there will be a unique combinatorial

game category games // C.

While the category games is a free combinatorial game category, most of the interest-

ing examples will not be free.

Example 4.7. The outcome lattice

N

L
����

N

R

??
??

P

L ????

P

R
��

��

is a combinatorial game lattice, with the following additional structure: there are cross-

arrows between every pair except (L,P ), (L,R), (P, P ), and (P,R) (that is, there is a

cross-arrow A
� // B if it possible to win a game −G + H as Left, playing first, with
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o(G) = A, o(H) = B), and

{(gi)I |(hj)J} =





N if ∃i ∈ I, gi = L or P and ∃j ∈ J, hj = R or P ;

L if ∃i ∈ I, gi = L or P and ∀j ∈ J, hj = L or N ;

R if ∀i ∈ I, gi = R or N and ∃j ∈ J, hj = R or P ;

P if ∀i ∈ I, gi = R or N and ∀j ∈ J, hj = L or N.

Combinatorial game theorists will recognize this as the table one uses to compute the

outcome of a game from the outcomes of its options. The unique combinatorial game

functor from games to O gives the outcome of a game.

In fact, as we shall see later, this combinatorial game category is an example of a more

general construction, which allows us to build other “outcome” combinatorial game lat-

tices.

Example 4.8. Any category with a 0 object has a (rather trivial) cgc structure, with

the module being the identity, and {G|H} = 0 for all G,H . In particular, a one-object

one-arrow category equipped with this cgc structure is the terminal object in cgc.

Example 4.9. It is easily checked that a product of two cgc’s has canonical cgc structure.

Example 4.10. If C is a combinatorial game category, then pos(C) is also a combina-

torial game category, where pos “makes C into a module poset”; that is, it reduces all

arrows between objects to a single arrow, and similarly with cross-arrows. In particular,

pos(games) is the usual lattice of combinatorial games.

We can also show that the “games born by day n” form a combinatorial game lattice.

Recall that the day of a game is defined recursively: if a game G has options all of day n

or less (and at least one option born by day n), then G is born by day n+1. In (Calistrate

et al. 2002) and (Fraser et al. 1987), the authors show that the equivalence classes of

games born by day N form a lattice. We would like to show that these lattices are in

fact combinatorial game lattices. To do this, we first show that the games born by day

n are equivalent to “quotienting out by games born by day n − 1”‡. Then, to form the

diproduct of games born by day n, we form the diproduct in games, then quotient out

by games born by day n − 1 to get us back to games born by day n. Thus, we need to

prove a few results first.

Lemma 4.11. If G � H , and both are born on day n + 1 or less, then there exists a

game born by day n or less such that o(G+X) � o(H +X).

Proof. If G � H , then Left can win G−H , playing first. Thus there exists a GL such

that H ≤ GL or there exists a HR such that HR ≤ G. Suppose the first case is true.

Since H ≤ GL, o(H −GL) ∈ R ∪ P . Now, Left can also win playing first in G−GL, by

taking the GL move in G, then following the copycat strategy. Thus o(G−GL) ∈ L∪N .

Thus, taking X = −GL (which is born by day n or less), we get o(G+X) � o(H +X).

The second case is similar, as we can take X = −HR.

‡ The authors are grateful to Aaron Siegel for providing assistance with this proof.
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Definition 4.12. Say that G is equivalent to H up to day n, and write G ∼=n H , if

o(G +X) = o(H +X) for all games X born by day n.

Proposition 4.13. The games born by day n+ 1 are equivalent to taking the set of all

games and modding out by ∼=n.

Proof.

Suppose we have G,H born by day n + 1, with G 6= H , and assume without loss of

generality that G � H . Then the previous lemma implies that G can be distinguished

from H by a game born by day n.

Conversely, suppose that we have an arbitrary game G. We need to show that under
∼=n, it is equivalent to some game born by day n+ 1. Then define

L = {X ∈ Gn : X � G}

and

R = {X ∈ Gn : X � G}

Putting G′ = {L|R}, we get that G is born by day n + 1, and it is easy to check that

G ∼=n G
′.

Proposition 4.14. The lattice of games born by day n form a combinatorial game

lattice, where

— {(gi)I |(hj)J} := {(gi)I |(hj)J}/ ∼=n

— G ≤ H if there exists a pair of games G′, H ′ such that G ∼=n G
′, H ∼=n H

′, and an

arrow G′ //H ′,

— G � // H if there exists a pair of games G′, H ′ such that G ∼=n G
′, H ∼=n H

′, and a

cross-arrow G′ � //H ′,

Proof. The previous proposition gives that the diproduct is well-defined. Moreover,

the lemma ensures that the lattice structure is the same as the lattice structure for the

games born by day n. The axioms for a combinatorial game category are a direct result

of the definitions.

Note, however, that while the definition of ≤ does not introduce any new inequali-

ties, the definition of
� // introduces new cross-inequalities. For example, in the lattice

of games born by day 1, there is no first-player win from 1 to 1, but there is a cross-

inequality 1
� // 1 in the combinatorial game category.

Finally, since the initial cgc is compact monoidal, one might be curious when the free

cgc construction produces a compact monoidal category. In particular, suppose we start

with a compact monoidal category C. We form the chaotic module category C′ on this

category, adding a single module arrow between any two objects of C. If we apply the

free cgc functor F to C′, do we get a compact monoidal category? By constructing the

monoidal structure similarly to that of games, it is easy to show the following:
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Proposition 4.15. If C has monoidal structure, then the underlying category of F (C′)

has a natural monoidal structure, where the unit is I, and:

C ⊗D := C ⊗D,

A⊗ {(Ci)I |(Dj)J} := {(A⊗ Ci)I |(A⊗Dj)J},

{(Ci)I |(Dj)J} ⊗A := {(Ci ⊗A)I |(Dj ⊗A)J},

{(Ai)I |(A
′
j)J} ⊗ {(Bk)K |(B′

l)L} := {(AI ⊗H)I , (G⊗Bk)K |(A′
j ⊗H)J , (G⊗ b′l)L}

(where, for the last definition, G = {(ai)I |(a′j)J}, H = {(bk)K |(b′l)L}).

Unfortunately, the same is not true of compact closed structure. If C has compact

structure ∗, one could define

{(gi)I |(hj)J}
∗ := {(h∗j )J |(g

∗
i )I}

This gives an involutive functor on the underlying category of F (C′). However, in the

free game category, there are no arrows from objects of C to diproducts, so if G is a

diproduct, then there are no arrows

I // G∗ ⊗G,G⊗G∗ // I

and so F (C′) cannot be compact closed.

5. Combinatorial Game Categories and Polarized Categories

In this section, we describe the relationship between polarized categories, polarized game

categories, module categories, and combinatorial game categories. In particular, we will

show that any polarized game category gives a combinatorial game category. An intrigu-

ing aspect of this is that the outcome cgc is an example of this construction. Another

example of the construction shows that games with a consecutive move-ban (Ottaway

2009) form a combinatorial game category.

From (Cockett and Seely 2007), we recall the definition of the 2-category of polarized

categories:

Definition 5.1. The 2-category polcat consists of:

— an object is a pair of categories (Xo,Xp), with a module Xo
�M // Xp,

— an arrow between (Xo
�MX //Xp) and (Yo

�MY //Yp) consists of functors Xo

Fo //Y0,

Xp

Fp // Yp, as well as a module morphism

Yo Yp
�

MY

//

Xo

Yo

Fo

��

Xo Xp
�MX // Xp

Yp

Fp

��
��

eF
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— a 2-cell between (Fo, Fp, F̃ ) and (G, G̃) consists of natural transformations Fo
αo //Go,

Gp
αp // GP such that for any MX -arrow h

�m // g, we have that

Goh Gpg
′�

eGm

//

Foh

Goh

αo

��

Foh Fpg
�eFm // Fpg

Gpg
′

αp

��

commutes. The composition and identities are the natural ones.

Polarized categories and module categories relate as follows:

Proposition 5.2. The inclusion I of modcat into polcat has a right 2-adjoint P and

a left 2-adjoint S:

modcat

polcat

I

OOpolcat

modcat
!!

polcat

modcat
}}

⊣ ⊣

Proof. Suppose (Xo
�MX // Xp) is a polarized category. We need to describe P of it,

which should be a module category. We take the category to be Xp × Xo. The module

structure on this category, M , is given by

M [(g1, h1), (g2, h2)] = MX(h1, g2)

We need to define the composition of module arrows with X-arrows on either side. If

we have arrows

(g′1, h
′
1)

(f1,f2) // (g1, h1)
�m // (g2, h2)

then define (f1, f2);m := f2;m. Similarly, if we have arrows

(g1, h1)
�m // (g2, h2)

�(f1,f2) // (g′2, h
′
2)

then define m; (f1, f2) := m; f1.

The associativity and unit axioms for M follow directly from the associativity and unit

axioms for MX. This thus defines a module category.

Suppose now that we have a polarized functor (Xo
�MX //Xp)

(Fo,Fp, eF ) //(Yo
�MY //Yp).

We define P(Fo, Fp, F̃ ) to be Fp × Fo. The module map is a restricted version of F̃ , and

all axioms are easily checked.

If we have a polarized natural transformation (αo, αp), we can define a module natural

transformation by αp × αo. The axioms directly follow. Finally, it is easily checked that
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P is a 2-functor.

Suppose we have a polarized functor I(X
�M // X) // (Xo

�MX // Xp). This consists

of functors X
Fo //Xo, X

Fp //Xp, as well as a module morphism which assigns to each

x � // x′ a Fox
� // Fpx′.

Conversely, a module functor (X �M // X) // P(Xo
�MX // Xp) consists of a functor

X
F // Xp ×Xo, and a module morphism which assigns to each x � //x′ a F1x

� //F2x
′.

Thus, it is easily seen that these two categories are naturally isomorphic, and we have a

2-adjunction.

To define S of a polarized category (Xo
�MX // Xp), we take the coproduct of Xp and

Xo as the category; the module arrows are those given by MX and no others. Checking

that this provides a left 2-adjoint is then similar to the above.

We can now show how to build a combinatorial game category out of a polarized

game category. Moreover, we shall see that the outcome cgc will be an instance of this

construction.

Proposition 5.3. Suppose that Xo
�M //Xp is a polarized game category Then one can

define a cgc P(Xo
�M // Xp), with the category given by Xp × Xo, M as above, and

{(xi, yi)i∈I |(x
′
j , y

′
j)j∈J} :=

(
∐

I

yi,
∏

J

x′j

)

Proof. Since product and coproducts are functors, the above is also a functor. To check

the correspondence, take G = (xi, yi), H = (x′j , y
′
j), G

′ = (wk, zk), H
′ = (w′

l, z
′
l). Then we

have

{G|H} // {G′|H ′}

{(xi, yi)|(x′j , y
′
j)}

// {(wk, zk)|(w′
l, z

′
l)}

(
∐
I yi,

∏
J x

′
j)

// (
∐
K zk,

∏
Lw

′
l)

∐
I yi

// ∐
K zk,

∏
J x

′
j

// ∏
L w

′
l

(yi
� // ∐

K zk)i∈I ,
∏
J x

′
j

� // w′
l)l∈L

[(xi, yi)
� // (
∐
K zk,

∏
Lw

′
l)]i∈I , [(

∐
I yi,

∏
J x

′
j)

� // (w′
l, z

′
l)]l∈L

(gi
� // {G′|H ′})i∈I , ({G|H} � // h′l)l∈L

as required. We also need to check the coherence for the composite of two ditupled maps.

Suppose we have two ditupled maps

{(ai, bi)I |(cj , dj)J}
[(si)I |(rl)L] //{(a′k, b

′
k)K |(c′l, d

′
l)L}

[(s′k)K |(r′n)N ] //{(a′′m, b
′′
m)M |(c′′n, d

′′
n)}
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We need this composite to be equal to

(†) [(si; [(s
′
k)K |(r′n)N ])I |([(si)I |(rl)L]; r′n)N ]

The first expression reduces to
(
∐

I

bi,
∏

J

cj

)
((si)I ,(rl)L)) //

(
∐

K

b′k, prodLc
′
l

)
((s′k)K ,(r

′

n)N ) //

(
∐

M

b′′m,
∏

c′′n

)

which reduces further to
(
∐

I

bi
(si)I //

∐

K

bk
(s′k)K //

∐

M

b′′m,
∏

cj
(rl)L //

∏

L

c′l
(r′n)N //

∏

N

c′′n

)

However, by the coherence axioms for a polarized game category, this becomes
(
∐

I

(si;(s
′

k)K)I //
∐

M

b′′m,
∏

J

cj
((rl)L;r′n) //

∏

N

c′′n

)

which is the expanded version of (†), as required.

Example 5.4.

Any category X with products and coproducts is a polarized game category (where

the module is the identity) and hence, by above, we get a cgc structure on X × X.

Example 5.5. In particular, taking the simplest non-trivial category with products and

coproducts, X = {0 ≤ 1}, and applying the construction above, we get the outcome

lattice

N

L
����

N

R

??
??

P

L ????

P

R
��

��

where (0, 0) = R, (1, 0) = N, (0, 1) = P, (1, 1) = L (think of 0 as Right wins, 1 as Left

wins - the first slot determines who wins if Left goes first, and the second slot determines

who wins if Right goes first). It is easily checked that the {|} structure on this lattice

defined by P is the same as the {|} structure given in example 4.7.

Example 5.6. Taking X = {R ≤ D ≤ L} (where D represents draw) gives the loopy

outcome category (Siegel 2009, p. 97)

R

′N????

R

′P
����

′N

N ????

′N

D
����

′P

D ????

′P

P
����

N

N ′

����

D

N ′
????

D

P ′

����

P

P ′
????

N ′

L
����

P ′

L ????



Combinatorial Game Categories 19

Example 5.7. Recall that the initial object in polgam is the finite Abramsky-Jagadeesan

polarized game category AJ. Applying the games construction to this category gives

consecutive-move-ban games. A consecutive-move-ban game is one in which both Left

and Right could have starting plays, play alternates so that GLL and GRR are empty,

and every option of G has a consecutive-move-ban. If we have an object of P(
∐
I hi,

∏
gj)

(where
∐
hi is a player game,

∏
J gj an opponent game), it is sent to the consecutive-

move-ban game {(hi)I |(gj)J}. By the construction of ditupling in P , ditupling in P(AJ)

removes any GLL or GRR options.

Consecutive-move-ban games have appeared in the combinatorial game literature as a

useful tool to study misère games: for more detail, see (Ottaway 2009).

There is also a functor from cgc to polgam (which, unfortunately, is not adjoint to

P ). It defines the opponent category of a cgc to be those objects which have no left

option, and the player category of a cgc to be those objects which have no Right options.

Proposition 5.8. There is a 2-functor cgc
F // polgam which sends a combinatorial

game category C to the polarized game category with

— Xo is the full subcategory of C consisting of objects of the form {∅|(hj)J},

— Xp is the full subcategory of C consisting of objects of the form {(gi)I |∅},

— the module arrows are the module arrows of C,

— coproduct is given by
∐
I xi := {(xi)I |∅},

— product is given by
∏
I yi := {∅|(yi)I},

— projection and injection are given by the projection and injection of the cgc,

— tupling and cotupling are both given by ditupling of the cgc.

Proof. The coherence rules for a polarized game category all follow easily from the

coherence rules for the CGC.

Example 5.9. Applying F to the initial object of cgc gives a polarized game category

where the opponent objects are all games with no Left option, and the player objects all

games with no Right option. Note, however, that this polarized game category is not the

initial object in polgam, as not every opponent game is a product of player games, nor

is every player game a coproduct of opponent games.

Example 5.10. Suppose C is a category with products and coproducts. It is easy to

check that if we apply FP to the polarized game category C
�IC // C, we get a polarized

game category which is isomorphic to C
�IC //C. In particular, if we apply F to the four-

or nine-element outcome categories, we get back the two- and three-element lattices from

which they were built.

If we include the results from (Cockett and Seely 2007) on the free polarized game

category, we have the following functors between polarized categories, polarized games,
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module categories, and combinatorial game categories:

polgam cgc

P1

55 cgcpolgam

F1

ss
polgam

polcat

U2

��
polcat

polgam

F2

HH

⊣

cgc

modcat

U3

��
modcat

cgc

F3

HH

⊣

polcat modcat

P0

>>polcat modcat

S

""
modcatpolcat Ioo

⊥

⊥

Each Fi is a free functor, each Ui a forgetful functor, and the Pi functors construct

module categories out of polarized categories. The only commutativity is P0U2 = U3P1.

6. Idempotents in Combinatorial Game Categories

As mentioned in the discussion of combinatorial games, one of the most fundamental

tools of combinatorial game theory is the canonical form of a game G. It is a game G′,

which is equivalent to G, but is “simplest”, in the sense that there are no dominated

or reversible moves, and all of the options of the game are in canonical form. In this

section, we will show that the notion of the canonical form of a game is deeply linked

to categorical notions. In particular, for any object G in the category games, there is a

unique “maximal” idempotent on G, which contains all of the dominated and reversible

moves of G. Moreover, we shall show that idempotents split in the category of games,

and the splitting of this idempotent gives the canonical form of the game G.

We begin by describing the general theory of these “maximal” idempotents, then show

how this theory applies to the category games. The general theory holds in any finite-

set-enriched category in which idempotents split.

Categories enriched in finite sets have a number of rather special properties and a no-

table one is that they always have a fully retracted skeleton. An object is fully retracted

in case its only idempotent endomorphism is the identity. In a finitely enriched category

in which idempotents split, every object has, up to isomorphism, a unique retract which

is fully retracted.

Recall that a category is enriched in finite sets in case it is an ordinary (sets-enriched)

category in which all the homsets are finite. This does not mean the number of objects is

finite as the category of finite sets, setsf , is certainly finite-set-enriched, yet by no means

has a finite number of objects. Indeed, any setsf -concrete category (i.e. a category with

a faithful functor to finite sets) will be finite set enriched so that the category of finite

groups, rings or fields are all finite set enriched.

A peculiar property that finite set enriched categories have is that every endomor-
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phism, if raised to a high enough power, will start to repeat itself (as there are only

finitely many such maps). This allows us to associate with each map an idempotent; a

category in which one can associate with each endo-map an idempotent of this form is

said to be retractive. If, in addition, each object has an associated fully retracted object

the category is said to be fully retractive.

A retractive inverse, g : B //A, for a map f : A //B is a map such that gfg = g.

To explain why this is called a “retractive” inverse, consider the following situation where

s and s′ are sections and so have right inverses r and r′ respectively, then rs′ has r′s

as a retractive inverse as r′srs′r′s = r′s. Thus, whenever two objects have a retract in

common they will be connected by a map which has a retractive inverse. Notice in this

case, although this does not happen in general, also r′s has a retractive inverse rs′. In

this case we shall say that the pair of maps are mutual retractive inverses.

When idempotents split, being connected by a map with a retractive inverse implies

that the domain and codomain of the map have a common retract. To see this, first note

that if f has a retractive inverse g then both fg and gf are idempotents and in the

idempotent splitting

g : gf // fg and fgf : fg // gf

but also g(fgf) = gf and (fgf)g = fg so that these make these idempotents isomorphic.

This means we have a pair of sections exhibiting a common retract of the objects.

Notice that if g is a retractive inverse for f then f need not be a retractive inverse of

g. However fgf will be a retractive inverse of g as (fgf)g(fgf) = fgf . Thus when g is

a retractive inverse of f then g and fgf are always mutual retractive inverses.

Retractive inverses need not be unique but they do enjoy the following weak unique-

ness property: if g and g′ are retractive inverses of f such that fg = fg′ and gf = g′f

then g = g′, as g = gfg = gfg′ = g′fg′ = g′. This is as might be expected as gf and fg

are, from our analysis, supposed to split via the same object (up to isomorphism).

An endomorphism h : A // A has a central retractive inverse g in case g is a

retractive inverse of h such that hg = gh: the “central” prefix refers to the fact that the

two idempotents generated are the same. Notice that this means that gnhn = (gh)n = gh

and hngn = (hg)n = hg and has the consequence that if g and g′ are central retractive

inverses of f with gn = g′n for some n ≥ 1 then g = g′. This is because:

g = gfg = (gf)ng = gnfng = g′nfng = (g′f)ng = g′fg

= g′(fg)n = g′fngn = g′fng′n = g′(fg′)n = g′fg′ = g′

The cenral retractive inverses of h can be ordered: suppose g1 and g2 are as above, then

define g1 ≤ g2 if g1hg2 = g2 = g2hg1. This is clearly a reflexive relation. It is transitive

since if g1 ≤ g2 and g2 ≤ g3 then

g1hg3 = g1hg2hg3 = g2hg3 = g3 and g3hg1 = g3hg2hg1 = g3hg2 = g3
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and antisymmetric since if g1 ≤ g2 and g2 ≤ g1 then g1 = g1hg2 = g2.

A central retractive inverse r of h : A // A is a least central retractive inverse,

if for any other central retractive inverse g of f we have r ≤ g (that is gfr = g = rfg).

Clearly if h has a least central retractive inverse it must be unique.

Clearly any automorphism has as its least retractive inverse its ordinary inverse. Any

idempotent e has its least reflexive retractive inverse e. To see this first we note that a

reflexive retractive inverse of an idempotent is always an idempotent as g = gegeg =

ggeeg = ggeg = gg. e is clearly a reflexive retractive inverse of itself but for any other

such inverse g we have

eeg = eegeg = geeeg = geg = g = geg = geeeg = gegee = gee

so that e is the least central retractive inverse.

We shall say that a category is retractive in case each endomorphism f : A //A has

a least central retractive inverse rf such that rfgf = frgf .

Clearly every groupoid is a retractive category, but there is also an important source

of examples in finitely enriched categories:

Proposition 6.1. Any finite-set-enriched category is retractive.

Proof. Suppose f : A //A then there is are smallest numbers k, h, h′,m > 0 such that

fk = fk+h and m · h = k + h′. Set rf = f2·m·h−1 then certainly frf = rff but also

rffrf = f2·m·h−1ff2·m·h−1

= f2·m·hfk+h
′−1

= fk+2·m·hfh
′−1

= fk+h
′−1

= rf

To show rf is least, we suppose we have a central retractive inverse g. We must show

that rffg = g = gfrf . As rf and g commute it suffices to show rffg = g. For this we

have:

g = gfg = (gf)2·m·hg

= g2·m·hrffg

= g2·m·hrffrffg

= (gf)2·m·hrffg

= gfrffg

= rffg.
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It remains to show that rxyx = xryx. For this we observe:

(xy)2·m·h−1x = x(yx)2·m·h−1

so that if ryx = (yx)2·m·h−1 we are done.

Lemma 6.2. In any category, if fg repeats with cycle length h after step k (i.e. we

have (fg)k = (fg)k+h) then gf repeats with cycle length h, and it starts repeating at or

before k + 1 steps.

Proof. If fg starts repeating at k then for any k′ > 1 we have

(gf)k+k
′+h = f(fg)k+h+(k′−1)g = f(fg)k+(k′−1)g = (gf)k+k

′

.

As this works for all k′ > 1 it follows that gf repeats no later than k + 1.

Now (yx)2·m·h−1 = (yx)2·(k+h
′)−1 if the cycle length of yx is less or equal to k (that is

k or k − 1), and we are done. However, if the cycle length is k + 1 and h′ = 1, we must

use the fact that

(yx)2·(k+h
′)−1 = (yx)2·((k+1)+h)−1 = ryx.

This completes the proof of proposition 6.1.

An object is fully retracted in case its only idempotent endomorphism is the identity

map.

Lemma 6.3. In a retractive category:

1 If two fully retracted objects are connected (that is, there are maps both ways between

them) then all maps between them are isomorphisms.

2 The endomorphisms of a fully retracted object form a group.

3 Any two fully retracted objects which are retracts of the same object are isomorphic.

Proof. Suppose A and B are fully retracted and f : A // B and g : B // A then

rfgfg = fgrfg = 1A so fg is an isomorphism. This means that f is a section. But

similarly gf is an isomorphism so f is a retraction, and so is an isomorphism.

Two fully retracted objects which are retractions of the same object are connected,

and so are isomorphic.

We shall call a category fully retractive in case the category is retractive and every

object can be fully retracted.

Lemma 6.4. A retractive category is fully retracted in case every object has an idem-

potent e which splits such that any other idempotent e′ with ee′ = e′e has ee′ = e.

Proof. The splitting of e gives a fully retracted object as any idempotent on that object

would induce an idempotent e′ which commutes with e on the original object and would

have ee′ = e′.

Corollary 6.5. Every finite-set-enriched category in which idempotents split is fully

retractive.
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Proof. The number of idempotents on an object is finite. Define a preorder on idem-

potents by e ≤ e′ if ee′ = e. This is clearly reflexive. It is transitive as e ≤ e′ ≤ e′′ means

ee′ = e and e′e′′ = e′ so that ee′′ = (ee′)e′′ = e(e′e′′) = ee′ = e. This preorder must have

least elements: pick such a least element e0. Now suppose ee0 = e0e then e0e = e0 as e0
is miNimal. Thus e0 exhibits the property required by lemma 6.4.

6.1. Idempotents in games

We now return to particular considerations of the category games. Note that games is

finite-set enriched, so the above theory will apply, so long as we can show that idempotents

split in games. This result is well-known to game-theorists, though not in this form.

Proposition 6.6. Idempotents split in the category games.

Proof. We proceed by induction on the birthday of the game. So suppose that G
e //G

is an idempotent, and assume that any idempotent on a game with birthday less than

that of G = {(gi)I |(hj)J} splits. If Right chooses a move hj , Left’s response falls into

one of three categories:

1 some k 6= j and an arrow hk // hj , (hk “dominates” hj),

2 an idempotent hj
ej // hj,

3 or some hLj , and an arrow G // hLJ (hj is “reversible”),

(Similarly for any choice of move gi by the Right player). Define G′ by taking G and, for

each j and each of the above cases,

1 eliminate hj,

2 split the idempotent ej , and replace hj with the split object h′j ,

3 replace hj with the list of Right options of hLj .

It is easy to see that such a definition of G′ gives canonical maps G
e1 // G′ e2 // G

such that e2e1 = e: for both e1 and e2, we follow the strategy e. If our response has

been removed we choose its dominated option, if it has been replaced by its idempotent

splitting, we use the split map, and if it has been reversed, we use the reversed strategy.

Thus, by above, every object G in games has a fully retracted retract G′. We now

show that this must be the canonical form of G.

Proposition 6.7. In games, an object G = {(gi)I |(hj)J} is fully retracted if and only

if it is in canonical form.

Proof. We prove this by induction. Assume that for every game with birthday less

than that of G, the proposition holds.

For the right-to-left implication, assume G is not in canonical form. Since each of its

options are in canonical form, it either has a dominated option or a reversible option.

Suppose it has a dominated Right option, hk ≤ hj . Define a strategy e on G which is the

identity strategy for any choice by Right except hj . In the case of hj , respond with hk.
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This gives a non-trivial idempotent on G. If it has a reversible option G ≤ hLj , we define

a strategy e on G which is the identity strategy for any choice except hj . If hj is chosen,

respond with hLj . This also gives a non-trivial idempotent on G. Dominated or reversible

Left options are treated similarly.

For the left-to-right implication, assume G has a non-trivial idempotent. Assume that

the non-trivial option is the choice of either some hk
f //hj (where f is not the identity),

or some hLj (Left options are similar). In the first case, either f is itself an idempotent,

or hk ≤ hj for j 6= k. If f is an idempotent, this contradicts our inductive assumption.

Otherwise, we have a dominated or reversible option, so G is not in canonical form.

Thus, the notion of the canonical form of a game is a particular example of a phe-

nomenon which happens in any finite-set-enriched category in which idempotents split.

To conclude this section, we give two counter-examples to further understand the notion

of canonical form.

Example 6.8. The following counter-example shows that the sum of two games in

canonical form need not be in canonical form. Take G = {0|0} = ∗ and H = {1|0}. Then

G+H = {H, 1 + ∗|H, ∗}. However, ∗ < H , so H is a dominated option.

Example 6.9. The following example shows that two games in canonical form may have

more than one arrow between them. Take H = {5||{1, 1 + ∗| − 5}}, and G = {|} = 0.

G is obviously in canonical form, and it is easy to check that H is also (the presence of

the 5 and -5 ensure that there are no reversible options). There are two arrows G //H :

once Right moves, Left can choose either 1 or 1 + ∗.

7. Loopy Games

A “loopy game” is one in which a player can return to a previous game position. This

raises two questions. The first is determining the outcome of such a game: who wins a

line of play which endlessly cycles back on itself? The second is structural: is there a

category of loopy games? The difficulty with such a categorical structure is composition:

when we try to define the “swivel chair strategy” for the composite G
f1 // H

f2 // K,

we could end up with an infinite loop in the H terms, never resolving our response in

either G or K. As we shall see, solving the first problem also solves the second: if we

can define who wins which loops, we can get a categorical structure. However, there are

different ways of defining who wins such loops.

In this section, we will look at the different approaches to dealing with this problem,

and what categorical structure they contain. Interestingly, the combinatorial game theory

community has developed a different approach from the proof theory/computer science

community; here, we will be able to compare and contrast the two approaches.

One initial approach is to consider all infinite plays as draws. This gives nine outcome
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classes for each game, determined by whether Left wins, loses or draws playing first or

second (we have previously shown that this expanded outcome lattice is also a combi-

natorial game lattice). One can then put a partial order on all loopy games just as for

normal games:

G ≤ H if o(G+X) ≤ o(H +X) ∀ loopy games X.

Our question is then to ask whether there is a notion of arrow between loopy games

which generalizes this partial order. This is essentially the question Aaron Siegel asks in

his survey of loopy games: “Can one specify an effective equivalent definition of [G ≥ H ]?”

(Siegel 2009, p. 97).

One would like to define an arrow G //H to be a strategy for Left, playing second in

−G+H , that at least achieves a draw for Left. As mentioned above, the difficulty with

this is the composition: if we have arrows G // H // K and attempt to use the usual

definition of composition, we find that we may end up with an infinite loop between the

H and −H , never giving a response in the game −G + K. The first solution given by

game theorists to this problem is to ban all infinite cycles that could occur in alternating

play.

Definition 7.1. A loopy game G is a stopper if there is no infinite alternating sequence

of moves in G.

When restricted to the stoppers, the definition of arrows given above does define a

category, and the existence of an arrow provides an alternate definition of ≤. Moreover,

actual games have this condition. One example is the game of Fox and Geese. The foxes

are allowed to move freely around the board, while the geese must always move forward.

Thus, if the fox is allowed to play continually, one could end up with an infinite set of

moves. However, if one is playing alternately, there can never be an infinite cycle, as the

geese always move forward.

In general, however, not all games will be stoppers. The second way game theorists

deal with the problem is to specify who wins infinite loops: either all loops are won by

Right, or all are won by Left.

Definition 7.2. If G is a loopy game, define G+ to be the game where all infinite plays

are wins for Left, and G− to be the game where all infinite plays are wins for Right. Say

that a loopy game is “fixed” if it is either G+ or G− for some G. A sum G1+G2+ · · ·+Gn
is a win for a player if they win in every component, and a draw otherwise.

The definition of ≤ is then modified so that X varies over all fixed or free loopy games.

An arrow G //H is then a survival strategy in both −G+ +H+ and −G− +H− (where

taking the − of a fixed loopy game reverses who wins infinite plays). This definition of

arrow gives a categorical structure on the set of all loopy games. Moreover, the “swivel

chair” theorem (Siegel 2009, p. 104) then says that G ≤ H if and only if there is an arrow

from G //H .
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However, there is a third solution to the problem of loopy games: each possible loop in

a game comes pre-assigned as either being a win for Left or a win for Right. That is, the

data for a game contains not only what moves one can make from that game, but also

an assignment of Left or Right to every position in the game which could be returned

to by players. Arrows are survival strategies; that is, strategies on −G+H so that Left

wins in at least one component where there is an infinite play. If we modify ≤ to range

over all loopy games of this type, the existence of G // H is equivalent to G ≤ H (see

later).

The advantage of this third approach is greater flexibility. By assigning each loop as

either a win for Left or a win for Right, one can distinguish between different types of

loops that may occur in a game. An example is a situation in Checkers where one player

can trap another in a corner. In this case, infinite play will occur. However, the situation

looks to be more of an advantage to the player who has trapped the other. Thus, we

could assign such a loop as a win for the player who trapped the other player’s pieces.

In general, however, not all loopy games easily allow such an assignment. In the game

of Philosopher’s football, players play on a n ×m board with a ball initially placed in

the middle. On their turn, a player may either place a stone anywhere on the board, or

jump the ball over a sequence of stones, as in checkers. The goal is to get the ball off

the end of your side of the board. Situations can arise in which the ball returns over

and over to the same position. One could say that such a loop is a win for a player in

whose territory the ball loops more often. However, if the ball loops equally through both

player’s territories, one must assign this game to be a win for one player or the other, in

a somewhat arbitrary fashion.

From the point of view of category theory, however, the loopy games which have an as-

signment of either Left or Right to each player are far preferable, as they have a universal

property: they are inductive/coinductive data types, also known as initial and terminal

algebras, or least and greatest fixed points.

7.1. Definition of Loopy Games

To describe the category of these “fixed” loopy games, we use the description of games

which views them as trees. If we view games are trees, then loopy games are represented

by trees with backedges.

Definition 7.3. A loopy game G is a tree E
h,t // V with backedges, as well as

— a function E
p // {R,L} (which indicates which edges belong to which player),

— a function w from the set of vertices which are the codomain of some backedge to

{R,L} (which indicates who wins if that vertex is infinitely looped through).

The negative of such a game is easy to describe:
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Definition 7.4. For a loopy game G, −G is the loopy game with the same tree structure,

but in which p and w are the opposite of those for G.

To describe morphisms between these games, we need to describe a legal play on a

pair of games (G,H).

Definition 7.5. A play σ on a pair of loopy games (G,H) is a list of edges of the disjoint

union of the trees for G and H such that

— the sublist of edges from G forms a rooted path through G,

— the sublist of edges from H forms a rooted path through H .

The sublist of G edges describes the moves that players make in the game G, and the

sublist of H edges the moves the players make in H . We can then describe what it means

for Left to survive a play which has infinite many edges:

Definition 7.6. If a play σ on (G,H) is of infinite length, say that Left survives σ so

long as at least one of the G or H sublists loops infinitely often through a vertex v with

w(v) = L.

We can then describe strategies as a set of plays “closed” under moves by Right and

responses by Left.

Definition 7.7. A survival strategy for Left playing second on (G,H) is a set of plays s

such that

— for all σ ∈ s of even length, if e is a Right edge, and σ ∗ e is a play, then σ ∗ e ∈ s,

— for all σ ∈ s of odd length, there exists a Left edge e such that σ ∗ e ∈ s,

— Left survives each σ ∈ s of infinite length.

Definition 7.8. The category of loopy games, loopy, has:

— objects loopy games,

— morphisms G //H survival strategies for Left playing second on (−G,H),

— identity given by the copycat strategy,

— composition given by the usual “swivel chair strategy”.

We would like to show that loopy is a cgc. To this end, we also need to define the

first-player survival strategies.

Definition 7.9. A survival strategy for Left playing first on (G,H) is a set of plays s

such that

— for all σ ∈ s of odd length, if e is a Right edge, and σ ∗ e is a play, then σ ∗ e ∈ s,

— for all σ ∈ s of even length, there exists a Left edge e such that σ ∗ e ∈ s,

— Left survives each σ ∈ s of infinite length.

We can then show:

Proposition 7.10. The category loopy has structure that makes it into a cgc.
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Proof. We define the module arrows to be the survival strategies for Left playing first

on (−G,H).

Suppose (gi)I and (hj)J are loopy games. We define the diproduct {(gi)I |(hj)J} to be

the tree which has the gi’s and hj ’s as subtrees, along with, for each i, a Left edge ei
from the root to gi, and for each j, a Right edge fj from the root to hj .

Suppose we have module arrows (gi
�si //{(g′k)K |(h′l)L})I and ({(gi)I |(hj)J}

�rl //h′l)L.

We define the ditupled arrow {(gi)I |(hj)J}
(si|rl) // {(g′k)K |(h′l)L} to be the strategy

⋃

i∈I

(ei ∗ σ : σ ∈ si) ∪
⋃

l∈L

(fl ∗ σ : σ ∈ rl)

Suppose we have an arrow G
s // gi. We define the injection G

�σi·f // {(gi)I |(hj)J} to

be the strategy

⋃
(ei ∗ σ : σ ∈ f),

and the projection is defined similarly. It is straightforward to check that these operations

satisfy the required coherences.

It is important to note that while loopy does have the structure of a combinatorial

games category, it does not naturally support the same monoidal structure as the cate-

gory games. For example, take the loopy games G and H where G has a single vertex

and backedges to it for both Left and Right, with the vertex designated as a Left win;

H is defined similarly, except the vertex is a Right win. The natural game sum of these

two games gives a single vertex with backedges for Left and Right: however, there is

no canonical choice for whether this vertex is won by Left or Right. Thus, the natural

monoidal structure on games does not extend to a monoidal structure on loopy. This

gives another important example of why the important structure for combinatorial games

is not the compact monoidal structure, but the combinatorial games structure described

in this paper, as loopy is a cgc, but not naturally monoidal.

The loopy games have a particularly nice property: the ones designated as Right wins

are inductive data types, and the ones designated as Left wins are coinductive data types.

Definition 7.11. Let C be a category, and C
F //C an endofunctor. An inductive data

type for F is an object µF , together with a map F (µF )
ψ //µF such that for any other
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object X ∈ C and map FX
f // X , there exists a unique map µF

f̄ //X such that

FX X
f

//

F (µF )

FX

F (f̄)

��

F (µF ) µF
ψ // µF

X

f̄

��

commutes.

A coinductive data type for F is an object νF , together with a map νF
φ // F (νF )

such that for any other object X ∈ C and map X
f // FX , there exists a unique map

X
f̄ // νF such that

νF F (νF )
φ

//

X

νF

f̄

��

X FX
f // FX

F (νF )

F (f̄)

��

commutes.

Example 7.12. For the identity functor, an inductive data type is an initial object,

while a coinductive data type is a terminal object.

Example 7.13. In set, an inductive data type for the functor X 7→ X+1 is the natural

numbers, where ψ sends ∗ to 0, and a natural number to its successor.

A coinductive data type for X 7→ X + 1 is the set N ∪ {ω}, and φ is the predecessor

function: 0 7→ ∗, n 7→ n− 1, ω 7→ ω.

Example 7.14. In set, if A is any set, an inductive data type for the functor X 7→

1 + (A×X) is the set of finite lists of elements of A. A coinductive data type is the set

of finite or countably infinite lists of elements of A.

Example 7.15. In set, an inductive data type for the functor X 7→ 1 + (X ×X) is the

set of all binary trees.

We now describe the functors for which loopy games are the inductive or coinductive

data types.

Definition 7.16. A loopy functor loopy
F // loopy is a functor of the form

loopy
∆ // loopyI × loopyJ

(Fi)I×(Gj)J // loopyI × loopyJ
{|} // loopy

where each Fi and Gj is either a loopy functor or an identity functor.
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Note the recursive definition. The first loopy functors built up in this way are

X 7→ {X |∅}, X 7→ {∅|X}, X 7→ {X |X}

and then other loopy functors are built up from those.

Definition 7.17. Suppose that F is a loopy functor. To define νF , let X be an arbitrary

game, and consider the game F (X). We build up the tree for νF as follows: each Left

option of F (X) is either a diproduct or an X . If the option is a diproduct, add a Left

edge to νF ; if the option is an X , add a backedge to the root of νF . Do the same with

Right edges, and continue on until the game F (X) is exhausted. Finally, label the root

of νF as a win for Left. µF is defined similarly, but with the root a win for Right.

Proposition 7.18. If F is a loopy functor, then νF is a coinductive data type for F ,

and µF is an inductive data type for F .

Proof. The arrow νF
φ //F (νF ) is given by the copycat strategy, as by the definition

above, νF has the same moves as F (νF ). Now, suppose we are given a map X
f //FX .

From this, we need to build a map X
f̄ // νF . Note that until an X is encountered in

FX , the structure of FX is the same as that of νF . Thus, we follow the strategy f until

either ourselves or our opponent chooses an X in FX . Thus, there is some follower of

X , Xa, with either Xa
//X or Xa

� //X . Thus, by composing with X
f //FX , we get

either Xa
// FX or Xa

� // FX . We then follow this strategy to continue giving moves

to define f̄ .

Repeating this process, either we run out of moves in X , or we encounter a loop in X .

In either case, we are guaranteed an Left in νF , and thus guaranteed a survival strategy.

It is easy to see that f̄ is the unique map that makes the diagram commute in

νF F (νF )
φ

//

X

νF

f̄

��

X FX
f // FX

F (νF )

F (f̄)

��

as φ is essentially the identity, and F (f̄) is also the copycat strategy until we get to f̄ ,

at which point it simply follows that strategy.

7.2. Conclusions

The theory presented here is merely a starting point for future structural investigations

into game theory. We now know the basic definition of a combinatorial game category.

This has allowed us to relate many constructions in game theory. For example, we have

shown that the outcome lattices, games born by day n, games with a consecutive move
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ban, and loopy games all have the same overall structure as the category of games

itself. One future consideration will be Misére games (games where the last player to

move loses). These are considerably more difficult to analyze than normal play games.

Moreover, there is no obvious categorical structure one can put on the set of Misére

games (Allen 2009). However, some success has been achieved by restricting attention

to certain subsets of the set of all Misére games (see, for example, (Plambeck and Siegel

2008)). It would be interesting to see determine how such subsets relate to combinatorial

game categories.
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