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1. Introduction

The idea of these notes is two-fold: first of all, to give a brief overview of some advanced
topics in category theory, such as enriched categories, internal categories, 2-categories,
and double categories, and secondly, to get to a result of myself and Mike Shulman [5] on
how a great number of mathematical objects can be constructed in the same way. These
mathematical objects include (but are not limited to):

• metric spaces,

• topological spaces,

• closure spaces,

• approach spaces,

• ordered sets,

• rings,

• algebras,

• enriched categories,

• internal categories,

• multicategories.

In fact, the construction will give more than this: it will also give the morphisms between
these objects, as well as the “relations” or “bi-modules” between these objects, and the
morphisms of these. So, given a certain input (a “double monad” T), we get an output
of (structure X, X-morphisms, X-bimodules, X-bimodule morphisms), where X is one of
the above, depending on what T we start with.

But, we have quite a ways before we get to that result! To get there, we first need to
understand two generalizations of the notion of category: enriched categories, and internal
categories.
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2. Enriched Categories and Internal Categories

Basic category theory can be generalized in two different ways, depending on what you
take as the definition of a category. One definition of a category is the “hom-set” definition:
a category X consists of:

• a set of objects X0,

• for each pair of objects x, y ∈ X0, a set of morphisms X(x, y) (the “hom-sets”),

• a composition operation X(x, y) ×Y(y, z)
c(x,y,z)

// X(x, z),

• identities 1
idx

// X(x, x) (where 1 is a 1-element set),

• associativity and unit axioms.

Another definition is the “set of arrows” definition: a category X consists of:

• a set of objects X0,

• a set of arrows X1,

• domain and codomain operations X1

dom, cod
// X0,

• an identity operation X0
id

// X1,

• a composition operation X2
c

// X1, where X2 is the set of “composable pairs of
arrows”,

• assocativity and unit axioms.

Note the difference between the two definitions: in the first, the arrows are broken up
into seperate hom-sets X(x, y), while in the second definition, all the arrows are lumped
together in a single set. Generalizing the first definition will give us enriched categories,
and generalizing the second definition will give us internal categories.

2.1. Enriched Categories. We begin with some motivation about why we might want
to generalize the hom-set definition of a category. In many categories, the hom-“sets” have
more structure than merely being sets. For example, consider the category ab of abelian
groups and group homomorphisms. Here, for abelian groups G, H , the hom-set ab(G, H)
has more structure: it is actually itself an abelian group. If we have f1, f2 ∈ ab(G, H),
we can add them by (f1 + f2)(g) = f1(g) + f2(x), and there is an identity 0(g) = 0. So,
ab(G, H) is not just a set, it’s an abelian group. So, in general, we would like to have
a theory of categories in which the hom-“sets” really have more structure: in particular,
we would like them to be objects of some other category V.
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What properties must this category possess? If we would like to have a category where
the hom-sets X(x, y) are objects of some other category V, then composition will be a
V-arrow X(x, y) × X(y, z) // X(x, z). So, one thought is that we will need V to have
products. In fact, this turns out to be too strong. All we need is a category which allows
you to “multiply” objects, but neccesarily by taking their categorical product. Such an
entity is a monoidal category.

2.2. Definition. A monoidal category consists of:

• a category V,

• a “multiplication” functor V ×V
⊗

// V

• a “unit” object I ∈ V0,

• natural isomorphisms X ⊗ (Y ⊗ Z) ∼= (X ⊗ Y ) ⊗ Z, X ⊗ I ∼= X ∼= I ⊗ X,

• coherence equations for the natural isomophisms.

2.3. Example. The category ab, with ⊗ the tensor product of abelian groups, and
I = Z, is a monoidal category.

2.4. Example. For k a field, the category of k-vector spaces, veck, is a monoidal cate-
gory when equipped with ⊗ the tensor product of vector spaces, and I = k.

2.5. Example. Any category with finite products, where ⊗ is the categorical product ×,
and I = 1 (the terminal object). The categories of sets and small categories are examples
of these.

2.6. Example. As a smaller example of the above, V = 0 ≤ 1, where ⊗ = ∧ (infimum),
and I = 1.

2.7. Example. The set of extended non-negative real numbers [0,∞], with ≥, and ⊗ =
+, I = 0.

With this idea of monoidal category, we can consider categories “enriched” in a
monoidal category, generalizing the “hom-set” definition.

2.8. Definition. If (V,⊗, I) is a monoidal category, then a V-enriched category X

consists of:

• a set of objects X0,

• for each pair of objects x, y ∈ X0, a morphism object X(x, y) ∈ V,

• a composition operation X(x, y) ⊗ Y(y, z)
c(x,y,z)

// X(x, z) (which is now not a
function, but a V-arrow),

• identities I
idx

// X(x, x) (where 1 is a 1-element set),
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• associativity and unit axioms.

Note the similarity to the hom-set definition of a category.

2.9. Example. As discussed above, ab is itself an ab-category.

2.10. Example. Similarly, veck is both a veck category and an ab-category.

2.11. Example. Recall that one-object categories are monoids. One-object ab-categories
are also interesting: they are rings. Indeed, suppose X is an ab-category with one object
*. Then it has X(∗, ∗) some abelian group; call it R. The composition is then an operation
R ⊗ R // R: this provides the ring multiplication. The identity Z // R supplies the
ring identity (recall that giving a group homomophism from the integers to a group is the
same as giving an element of that group). The associativity and unit axioms then give
the associativity and unit axioms for the ring.

2.12. Example. Similarly, a one-object veck-category is a k-algebra.

2.13. Example. For the very small example V = (0 ≤ 1), V-categories are pre-orders
(partial orders without anti-symmetry). Indeed, suppose we have a (0 ≤ 1)-category.
That is, we have a set X, and for each x, y ∈ X, X(x, y) ∈ {0, 1}. Writing x ≤ y

if X(x, y) = 1, we can see that the composition arrow X(x, y) ∧ X(y, z) ≤ X(x, z) is
transitivity of ≤. Similarly, the identity arrow 1 ≤ X(x, x) expresses reflexivity: x ≤ x.

2.14. Example. The ([0,∞],≥, +, 0)-categories are also interesting: they are gener-
alized metric spaces [7]. A [0,∞]-category consists of a set X0, and for each x, y,
X(x, y) ∈ [0,∞]. Thinking of this as the distance from x to y, we can see that the
composition arrow X(x, y) + X(y, z) ≥ X is the triangle inequality, while the identity
arrow 0 ≥ X(x, x) says X(x, x) = 0. These differ from usual metric spaces in that:

• they allow the distance ∞,

• they do not have X(x, y) = 0 ⇒ x = y (though this can be achieved with by
modding out),

• they are non-symmetric: X(x, y) 6= X(y, x).

This last item, however, can be useful, if one wishes to have a metric to indicate “work
done to move around a mountainous region” or the “shortest distance between locations
using (possibly 1-way) roads”, both of which are non-symmetric. Many general theorems,
such as the Banach fixed point theorem, hold in non-symmetric metric spaces (in fact, it
would be interesting to find which results of metric space theory rely on symmetry of the
metric).

So, enriched categories are useful in a few different ways:

• to add extra structure to “large” categories like ab and veck,
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• to relate structures like ordered sets and metric spaces directly to category theory.

There is also a notion of “enriched functor”; and in many of the examples considered
above, these are useful and interesting.

2.15. Definition. Suppose X and Y are V-categories. A V-enriched functor X
F

//Y

consists of:

• a function X0
F

// Y0,

• V-arrows X(x, y)
F̄

// Y(Fx, Fy) (think of this as the assignment (x
f

// y) 7→

(Fx
Ff

// Fy)),

• axioms saying that F̄ preserves composition and identities.

2.16. Example. Suppose X and Y are (0 ≤ 1)-categories; that is, pre-orders. Then a
(0 ≤ 1)-functor between them is an order-preserving function, as the existence of F̄ says
that x ≤ y ⇒ Fx ≤ Fy.

2.17. Example. Similarly, for V = ([0,∞],≥, +, 0), a V-functor between metric spaces
X,Y is a contraction: X(x, y) ≥ Y(Fx, Fy).

2.18. Example. A ab-functor between rings R, S (seen as ab-categories) is a ring ho-
momorphism. Indeed, as ab-categories, R and S have only one object, so the function on
objects does nothing. However, the arrow assignment R //S is an group homomorphism,
and the fact that it preserves composition and identities tells one that it is also a ring
homomorphism.

2.19. Example. If R is a ring, then an ab-functor R
F

//ab is a (one-sided) R-module.
Indeed, on objects, it is a function {∗} // ab, so that it picks out a single abelian group

M . The action on arrows, F̄ , is then a group homomorphism R
F̄

//ab(M, M). Thinking
of this as the map r 7→ (m 7→ r · m)), one can check that the axioms state exactly that
this gives an action of R on M , so that it is an R-module.

In fact, enriched functors to the base V (when it itself has a canonical V-category
structure) are usually interesting.

2.20. Example. If X is an ordered set and, then a (0 ≤ 1)-functor from X to (0 ≤ 1)
are the same as up-closed subsets of X (subsets A ⊆ X such that a ∈ A, a ≤ x implies
x ∈ A).

Note that [0,∞] is itself a [0,∞]-category (ie., metric space), with d(a, b) = b − a

(truncated subtraction).



6

2.21. Example. Suppose that F is a set of bakeries, and we have a way of transporting
bread between the bakeries. The cost of such transportation is a metric T on the set F .
Suppose further that each bakery f had a certain cost φ(f) associated to making a loaf
of bread there. What does it mean to say that φ is a functor (F, T ) // [0,∞]? It says
that for any two bakeries b1, b2, φ(b2) − φ(b1) ≤ T (b1, b2), or instead,

φ(b2) ≤ φ(b1) + T (b1, b2)

If φ was not an enriched functor, then there would be some b1, b2 such that

φ(b2) > φ(b1) + T (b1, b2)

That is, it would be cheaper to make bread at bakery b1 and transport it to b2 than it
would be to make bread at b2. Thus, we might as well shut-down bakery b2. Thus, φ is
an enriched functor if and only if the production costs at each bakery make sense, given
our transportation costs. 1

So, just as enriched categories capture some useful concepts, so do too enriched func-
tors. Naturally, there is also a notion of “enriched natural transformation” between
enriched functors.

2.22. Definition. Let (V,⊗, I) be a monoidal category, and suppose X
F,G

// Y are

V-functors between V-categories. A V-natural transformation F
α

// G consists of:

• natural V-maps I
αX

// Y(Fx, Gx),

• with an axiom expressing naturality.

2.23. Example. Recall that in the case V = 0 ≤ 1, V-functors X
F,G

// Y are order-

preserving functions. A V-natural transformation F
α

// G means that we have 1 ≤
Y(Fx, Gx); that is, Fx ≤ Gx for all x.

2.24. Example. Recall that in the case V = [0,∞], V-functors X
F,G

//Y are contrac-

tions. A V-natural transformation F
α

// G means that we have 0 ≥ Y(Fx, Gx); that
is, Y(Fx, Gx) = 0 for all x. If the generalized metric space Y has the usual “identity of
indiscerniables” property (that is, Y(y1, y2) = 0 ⇒ y1 = y2), then this means a V-natural
transformation exists if only if F = G.

2.25. Example. Recall that for V = ab, and R a ring, V-functors R
M,N

// ab are R-
modules. A ab-natural transformation between them gives a morphism Z // ab(M, N),

that is, an abelian group morphism M
α

// N which preserves the action of M . Thus, α

is a module morphism.

Next time, we’ll look at how generalizing the “set of arrows” definition also leads to
interesting examples.

1Thanks to Simon Willerton for this example.
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2.26. Internal Categories. In the previous section, we generalized the hom-set def-
inition by asking that each hom X(x, y) be an object of another category, rather than
a set. On the other hand, the “set of arrows” defintion of a category says that a cate-
gory is a set of objects, and a set of arrows. An internal category will have the set of
objects and set of arrows be objects of some other category. Note the differences: in
the first genearlization, the objects are still a set, and each hom X(x, y) is an object of
some other category V. In this generalization, the objects, rather than being a set, are an
object of some category C, while the arrows are bundled together into another object of C.

Before we give the full definition, we would like to motivate this idea. Why would want
to consider internal categories? To begin with, we will look at a more basic object: groups
internal to a category. Often, a group has more structure, such as being a topological
group or a Lie group. This idea is captured by considering groups internal to a category.

2.27. Definition. Let C be a category with finite products. A group internal to C

consists of:

• an object G of C,

• a multiplication G × G
m

// G,

• an identity 1
G

// ,

• axioms to make this a group, such as (1 ◦ e) ◦ m = 1 (ie., ge = g).

2.28. Example. A group internal to set is a group.

2.29. Example. A group internal to the category of topological spaces and continous
functions, top, is a topological group.

2.30. Example. A group internal to the category of smooth manifolds and smooth
functions, man, is a Lie group.

2.31. Example. A group internal to the category of small categories and functors, cat,
is a crossed module [6] (for more about this idea, see [2]).

2.32. Example. A group internal to the category of groups and group homomorphisms,
group is an abelian group. Indeed, let G be an internal group in group. Then G has
two multiplications: one because it is a group, ·, and because it is an internal group, ∗.

Since 1
e

// G is a group homomorphism, the identity as an internal group must be the

same as the identity of G. That G × G
m

// G is a group homomorphism says that

(g1 ∗ h1) · (g2 ∗ h2) = (g1 · g2) ∗ (h1 · h2)

One can show that this condition, along with the fact that the identities of * and · are
the same, shows that, in fact ∗ = ·, and they are commutative. This is known as the
Eckmann-Hilton argument, and is an amusing exercise if you haven’t seen it before.

So, groups internal to categories capture useful concepts. To see why categories inter-
nal to other categories might be useful, we need to see why groupoids are useful.
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2.33. Definition. A groupoid is a category in which every arrow is invertible. That is,

for each A
f

// B, there exists a B
g

// A such that fg = 1B, gf = 1A.

If one thinks of groups as the study of symmetries, then groupoids are the study of
“symmetries with many objects”. We’ll look at a number of examples of groupoids, then
talk about internal groupoids and internal categories.

2.34. Example. We will consider two types of puzzles. In the first, the symmetries form
a group, in the second, they more naturally form a groupoid 2. In a Rubik’s cube, we can
think of sequences of rotations as the elements of a group. By reversing the sequence of
rotations, we get inverses, and doing nothing is the identity. One can study properties of
the Rubik’s cube by studying properties of the group.

Now, consider the ”15-puzzle”. Here, there are blocks labelled 1-15 set in a 4x4 grid.
On each turn, one can exchange a block and the empty spot. Now, consider a sequence of
moves. We would like this to also form a group; after all, one can again reverse moves and
do nothing. The problem is that one cannot compose two arbitrary moves. For example,
we cannot compose ”moving the empty block from (1, 1) to (1, 2)” and ”moving the empty
block from (4, 4) to (3, 4)”. The position of the empty block determines whether we can
compose two moves. Thus, instead of a group, there is a groupoid with:

• objects of the groupoid being positions (m, n),

• an arrow (m, n) // (m′, n′) is a sequence of moves of the empty block from (m, n)
to (m′, n′).

Thus, to study this puzzle, we use this groupoid, rather than a group.

2.35. Example. An alternative to the fundamental group of a space is the fundamen-
tal groupoid of a space. In the fundamental group, one fixes a basepoint, and considers
equivalence classes of loops at that point.

By contrast, the fundamental groupoid considers all points of the space. The funda-
mental groupoid of a space X has:

• objects the points of the space X,

• an arrow x // y is an equivalence class of paths from x to y,

This can be slightly more convenient, as one doesn’t have to choose a base point of the
space. In particular, the fundamental groupoid of a space with many components will
have information about all the components, whereas with the fundamental group, one
only gets information about a single component.

2Example from http://cornellmath.wordpress.com/2008/01/27/puzzles-groups-and-groupoids/
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2.36. Example. Recall that a category with at most one arrow between any two objects
is a pre-ordered set, where x ≤ y if there exists an arrow x //y. Similarly, a groupoid with
at most arrow between any two objects is an equivalence relation: x ∼= y if there exists
an arrow x // y (the existence of an inverse guarantees the symmetry of the equivalence
relation).

2.37. Example. Suppose G acts on a set X. There is a standard equivalence relation
on X given by x ∼= y if gx = y, whose equivalence classes are the orbits. Thus, this forms
a groupoid. However, there is a groupoid with more information: the action groupoid,
with

• objects the elements of X,

• an arrow x // y is a group element g ∈ G such that gx = y.

Thus, this is an extension of the orbit equivalence relation. However, it also contains
more: the subcategory consisting of a single object x ∈ X is the isotropy subgroup at x:
{g ∈ G : gx = x}. Thus, this action groupoid contains both the orbit equivalence relation
and the isotropy subgroups.

2.38. Example. Recall that for each n, there is a group consisting of the n×n invertible
matrices. These can be combined into a single groupoid, whose objects are the natural
numbers, and where an arrow n // n is an invertible n × n matrix.

As further examples, Grothendieck generalized Galois theory by considering “Galois
groupoids”: see [3]. Groupoids are also a central idea in Alain Connes’ noncommutative
geometry: see [4]. Ronnie Brown’s survey [?] is also a useful reference for further examples
and ideas about groupoids.

Since internal groups are useful, and groupoids are useful, it seems important to be
able to combine the concepts. We can do this by defining internal groupoids, and more
generally, internal categories.

2.39. Definition. Suppose C is a category with pullbacks. A category internal to C,
X, consists of:

• an object X0 of C (the “object of objects”),

• an object X1 of C (the “object of arrows”),

• domain and codomain operations X1

dom, cod
// X0,

• an identity operation X0
id

// X1,

• a composition operation X2
c

// X1, where X2 is the set of “composable pairs of
arrows”,
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• assocativity and unit axioms.

X is an internal groupoid if there is additionally an operation X1
()−1

// X1 which gives
the inverse of an arrow.

Note that this generalizes the “set of arrows” definition of a category, so that

2.40. Example. A category internal to set is a (small) category.

2.41. Example. A groupoid internal to top is a topological groupoid.

2.42. Example. A groupoid internal to man is a Lie groupoid (which have many
applications in differential geometry: see, for example, [8]). As an example, any Lie
group G acting on a manifold M gives an “action Lie groupoid”, with X0 = M and
X1 = G × M × M .

2.43. Example. Somewhat surprisingly, an internal category in group is the same as
an internal group in cat; that is, a crossed module (again, see [6]).

2.44. Example. A category internal to veck is known as a “2-vector space”: see [1].

2.45. Example. A category internal to cat is a (strict) double category: a category
with two types of arrows (“horizontal” and “vertical”), and cells between these arrows.
These will be discussed later in detail.

Of course, there is naturally a notion of “internal functor” and “internal natural trans-
formation”.

2.46. Definition. Suppose X and Y are internal C-categories. An internal C-functor

X
F

// Y consists of

• a C-arrow X0
F0

// Y0 (taking “objects to objects”),

• a C-arrow X1
F1

// Y1 (taking “arrows to arrows”),

• axioms saying that F1 preserves domains and codomains,

• axioms saying that composition and identities are preserved.

2.47. Example. If G and H are groups internal to the category of groups (that is, an
abelian group), then an internal group-functor between them is a group homomorphism.

2.48. Definition. Suppose we have internal C-categories and internal C-functors X
F,G

//Y.

An internal C-natural transformation F
α

// G consists of

• a C-arrow X0
α

// Y1 (think of this as the map that sends an object X to the arrow
αX),

• axioms saying that “the domain of αX is FX, and the codomain GX”,

• an axiom saying that α is “natural”.

Next time, we’ll discuss how both enriched categories and internal categories each
organize into a “2-category”.
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3. 2-categories

We have seen in the previous two sections that both enriched and internal categories
relate to a number of different concepts in mathematics. But, in what sense are they
“categories”? To what extent can we do category theory with them? In this section, we
will show that both enriched categories and internal categories naturally organize them-
selves into 2-categories. In a general 2-category, one can do many of the interesting things
one can do what categories: for example, one can talk about adjunctions, monads, Kan
extensions, fibrations. By applying this general theory to enriched categories or internal
categories, we get notions of enriched or internal adjunctions, enriched or internal mon-
ads, etc.

The key element that allows one to “do category theory in a 2-category” is a notion of
“arrow between arrow”. For ordinary categories, the arrows are functors, and the “arrows-
between-arrows” are natural transformations. For enriched or internal categories, these
are supplied by the enriched and internal natural transformations. In general, a 2-category
is given by:

3.1. Definition. A 2-category C consists of:

• a class of objects X, Y ...

• between any two objects X, Y a class of arrows F, G, etc.,

• between any two arrows F, G, a class of “2-cells” α, beta...

• such that the objects and arrows form a category,

• there is an identity 2-cell, and one can compose 2-cells “horizontally” and “verti-
cally”,

• axioms for cell composition.

(Note: a 2-category is the same as a cat-enriched category).

3.2. Example. Categories, functors, and natural transformations form a 2-category.

3.3. Example. Sets, functions, and 2-cells being “equality” (that is, there is a 2-cell

f
α

// g if and only f = g) form a 2-category. More generally, any category C can be
made into a “discrete” 2-category where the 2-cells are equalities between arrows.

3.4. Example. There can be two different 2-categories on the same objects and arrows.
For example, as above, ordered sets, order-preserving functions, and equalities form a

2-category. However, we can replace the 2-cells with inequalities: there exists f
α

// g if
f(x) ≤ g(x) for all x, and this also forms a 2-category.

3.5. Example. As another example of the above, categories, functors, and natural iso-
morphisms forms a 2-category.
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3.6. Example. For any monoidal category (V,⊗, I), V-categories, V-functors, and V-
natural transformations form a 2-category (note that the ordered set example is one of
these, with V = 0 ≤ 1).

3.7. Example. For any category C with pullbacks, internal C-categories, internal C-
functors, and internal C-natural transformations form a 2-category.

3.8. Example. Monoidal categories, monoidal functors (with comparisons FX⊗FY //F (X⊗
Y ) and I // F (I)), and monoidal natural transformations (which cohere with the com-
parisons) form a 2-category.

3.9. Example. Categories fibred over a base E, cartesian functors, and cartesian natural
transformations form a 2-category.

We will give one example of “doing category theory in a 2-category”: adjunctions.

Recall that an adjunction X
G

//Y, Y F
//X is generally defined as natural isomorphisms

X(Fy, x) ∼= Y(y, Gx)

However, to define adjunctions in an arbitrary 2-category, we need to use the formulation
in which an adjunction consists of natural transformations

1Y

η
// GF and FG

ǫ
// 1X

with the “triangle identities”

(ǫF )(Fη) = 1F and (Gǫ)(ηG) = 1G

We simply replace functor by arrow, natural transformation by 2-cell, and we have the
definition of adjunction in a 2-category.

3.10. Definition. An adjunction in a 2-category consists of arrows X
G

//Y, Y
F

//X

and 2-cells
1Y

η
// GF and FG

ǫ
// 1X

such that
(ǫF )(Fη) = 1F and (Gǫ)(ηG) = 1G

3.11. Example. Of course, an adjuction in the 2-category of categories, functors, and
natural transformations is a usual adjunction.

3.12. Example. By comparison, an adjunction in the 2-category of categories, functors,
and natural isomorphisms is an (adjoint) equivalence of categories. This is the more
general notion of when two categories are “the same”: instead of asking that we have
functors F, G for which GF (y) = y and FG(x) = x, we instead ask that they be naturally
isomorphic.

3.13. Example. An adjunction in sets, functions, and equalities is just an isomorphism.
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3.14. Example. An adjunction between ordered sets is a Galois connection.

3.15. Example. An adjunction between [0,∞]-categories (that is, metric spaces) is es-
sentially an isometric isomorphism. Instead of asking that the contractions be inverses
of one another, an adjuction asks that, for example, Y(y, GFy) = 0. Thus, if the metric
spaces have “identity of indiscernables” (that is, Y(y1, y2) = 0 implies y1 = y2), then an
adjoint pair would be an isometric isomorphism.

3.16. Example. An adjunction in the 2-category of monoidal categories, monoidal func-
tors, and monoidal natural transformations is a “monoidal adjunction”. Many of the
standard adjunctions between monoidal categories are in fact monoidal adjunctions. For
example, the free/forgetful adjunction between (ab,⊗,Z) and (set,×, 1) is actually a
monoidal adjunction.

Of course, applying this notion to any 2-category of enriched categories or internal
categories gives a notion of enriched adjunction or internal adjunction particular to that
setting; the examples above are simply ones for which there is already a name in the
literature.

As mentioned above, one can extend other categorical defintions, such as monads,
Kan extensions, and fibrations, to an arbitrary 2-category. Applying this to particular
2-categories, such as enriched or internal categories, is an ongoing area of research.
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