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Abstract

We continue the program of structural differential geometry that begins with the
notion of a tangent category, an axiomatization of structural aspects of the tangent
functor on the category of smooth manifolds. In classical geometry, having an affine
structure on a manifold is equivalent to having a flat torsion-free connection on its
tangent bundle. This equivalence allows us to define a category of affine objects asso-
ciated to a tangent category and we show that the resulting category is also a tangent
category, as are several related categories. As a consequence of some of these ideas we
also give two new characterizations of flat torsion-free connections.

We also consider 2-categorical structure associated to the category of tangent cat-
egories and demonstrate that assignment of the tangent category of affine objects to a
tangent category induces a 2-comonad.

Finally, following work of Jubin, we consider monads and comonads on the category
of affine objects associated to a tangent category. We show that there is a rich theory
of monads and comonads in this setting as well as various distributive laws and mixed
distributive laws relating these monads and comonads. Even in the category of smooth
manifolds, several of these results are new or fill in gaps in the existing literature.

Contents

1 Introduction 2

2 Affine manifolds 4

3 Tangent categories and connections 5

4 Jubin’s thesis 11

∗Department of Mathematics and Statistics, University of Ottawa, Ottawa, Ontario CANADA
†Department of Mathematics and Computer Science, Mount Allison University, Sackville, New Brunswick

CANADA
‡Department of Mathematics and Computer Science, Brandon University, Brandon, Manitoba CANADA

1

http://arxiv.org/abs/1807.09554v2


5 Geometric and affine structures in tangent categories 13

6 Lifting tangent structure to the geometric categories 16
6.1 Alternate characterizations of flat torsion-free connections . . . . . . . . . . 25

7 The 2-comonad of affine geometric spaces 28

8 Structures in the affine categories 33
8.1 Monads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
8.2 Comonads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
8.3 Distributive laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
8.4 Bimonad and Hopf structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

1 Introduction

This paper is part of a broader program of structural differential geometry. The idea is
to axiomatize structural aspects of the category of smooth manifolds and smooth maps by
axiomatizing the tangent functor. A category with an abstract tangent functor is called a
tangent category. An axiomatization of the tangent functor was first given by Rosický [36],
and the concept was elaborated on by Cockett and the second author in [11] with additional
ideas introduced in [12, 13, 14, 16].

The axioms of a tangent category are sufficiently strong that one can develop highly
nontrivial results, but also general enough to capture a number of different settings where
there is a sensible notion of smoothness. For example, models of synthetic differential geom-
etry fit into this framework, as do the convenient manifolds of Frölicher, Kriegl and Michor
[20, 29, 9], and a notion of differentiation appearing in the calculus of functors [4].

There is also a strong logical underpinning for tangent categories. Differential linear
logic [18, 19] and the associated categorical structures of differential categories [7] are an
extension of linear logic to include an inference rule capturing the operation of taking a
directional derivative. To every differential category, one can associate a coKleisli category.
Such coKleisli categories are examples of cartesian differential categories [8]. Every cartesian
differential category has a canonical tangent category structure [11, Section 4.2].

Following this initial work, there has been further development showing the extent to
which further ideas of differential geometry can be developed within the abstract setting of
tangent categories. See [12, 13, 14, 16]. This paper is another contribution to this program.
In particular, we wish to look at affine manifolds (manifolds with an atlas whose transition
maps are affine) and how they can be defined in tangent categories. Affine differential
geometry is a relatively small subindustry of differential geometry, but affine manifolds have
a great deal of interesting structure as well as a variety of examples. See [34, 23, 24, 1, 2].

The work of this paper is in part inspired by the thesis of Jubin [26]. Jubin considers the
tangent functor on the category of smooth manifolds and smooth maps. He demonstrates
that this tangent functor has a monad structure. Indeed he shows that it has precisely one
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such and further demonstrates that there are no comonad structures on the tangent functor
at all. However he does demonstrate that when one restricts to the subcategory of affine
manifolds and affine maps, there are infinite families of monads and comonads. Furthermore
there are mixed distributive laws (see, e.g., [33]) between these structures.

While the notion of system of affine charts is not directly amenable to definition in a
tangent category, we use a theorem of Auslander and Markus [2] showing that an affine
manifold can be defined equivalently as a manifold equipped with a flat torsion-free connec-
tion on its tangent bundle (Theorem 2.2 below). Thus we are led to the theory of connections
in a tangent category as introduced in [14]. See [17] for the classical theory of connections.
Perhaps the best evidence of the strength of the axioms for tangent categories is how well
the theory of connections works here. Prompted by the Auslander-Markus characterization
of affine manifolds, we define a geometric space to be an object equipped with a connection
on its tangent bundle and an affine geometric space to be a geometric space whose associated
connection is flat and torsion-free. It is reasonable to call such objects geometric since the
given connection generalizes Riemannian structure and allows one to define such geometric
features as curvature and torsion. In particular, such features can be defined for an object
with connection in an arbitrary tangent category. Maps in the category of geometric spaces
are those maps that commute with the given connections. There has not been much in the
way of study of categories with such morphisms, although we do mention [25].

We first show that the various geometric categories that we define remain tangent cat-
egories, with the structure lifting from the base category. Along the way, we also look at
certain notions of morphism between tangent categories and derive technical lemmas about
their lifting to the geometric categories. We also give an alternative characterization of flat
torsion-free connections that seems to be new (Theorem 6.20): a flat torsion-free connection
K can be seen as a morphism in the category of geometric spaces from T (TM) to TM ,
where the tangent bundles TM and T (TM) are endowed with geometric structures canoni-
cally induced by K. This result alone demonstrates the importance of considering categories
whose arrows commute with connections.

We also consider certain 2-categories of tangent categories. We show that there are
2-functors that send each tangent category to its tangent category of geometric spaces or
affine geometric spaces. Of course, these results require a careful presentation of the 2-
categorical structure of tangent categories. We show that the affine construction induces
a 2-comonad on the 2-category of tangent categories. We then define an affine tangent
category to be an Eilenberg-Moore coalgebra with respect to this comonad and give an
alternate characterization of these structures.

Finally, we extend several results of Jubin to a general tangent category. We show that
for every non-negative integer there is both a monad and a comonad on the affine category
associated to a tangent category and that if one has negatives, the result holds for every
integer. We furthermore show that there are mixed distributive laws between these monads
and comonads, yielding bimonads and in some instances Hopf monads. As discussed in
section 8.3, some of these results are new for the category of smooth manifolds, while one of
the results fills in a gap in Jubin’s work.
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Remark 1.1.

• The authors thank NSERC for its generous support. The third author gratefully
acknowledges an AARMS PDF held earlier in the development of this work.

• Note that following previous work on tangent and differential categories [7, 8, 11, 12,
13, 14] we write our compositions in diagrammatic order unless otherwise indicated.
However, we write the application of a functor F to a morphism f as F (f), as in the
cited works, or as Ff ; correspondingly, we write the composite of functors F : A → B

and G : B → C in non-diagrammatic order as GF .

• In many of the longer calculations, we omit the subscripts on natural transformations
to save space.

2 Affine manifolds

We give an overview of the classical theory of affine manifolds and their associated connec-
tions. See [1, 2, 34]. An affine manifold is a real manifold whose transition maps are affine
(and hence necessarily smooth):

Definition 2.1. An n-dimensional affine manifold is a real manifold equipped with a
specified atlas consisting of charts ψi : Ui

∼
−→ Vi ⊆ Rn such that all of the composites

ψi◦ψ
−1
j : Vji → Vij are affine maps between the subsets Vji = ψj(Ui∩Uj) and Vij = ψi(Ui∩Uj)

of Rn. Here a map f : V → W between subsets V ⊆ Rn and W ⊆ Rm is said to be affine if
it has constant Jacobian, or equivalently, if it is the restriction of a map F : Rn → Rm that
is affine in the usual sense, i.e. a composite of a linear map followed by a translation.

While it is not obvious how one might generalize this notion to the more abstract context
of tangent categories, there is a theorem of Auslander and Markus that will enable us to
obtain such a generalization. See [2]. See [17] for the classical theory of connections.

Theorem 2.2 (Auslander-Markus). A manifold is an affine manifold if and only if there is
a flat torsion-free connection on its tangent bundle. Moreover, each affine manifold has a
canonically associated flat torsion-free connection on its tangent bundle, and every smooth
manifold with a flat torsion-free connection on its tangent bundle carries an associated affine
structure.

Of special interest are the complete affine manifolds. These are affine manifolds that
satisfy geodesic completeness, [17] p. 250. In the affine case, geodesic completeness turns
out to be equivalent to being a quotient of an affine space by a discrete group of affine
transformations acting on the space. See [24] for further discussion.
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3 Tangent categories and connections

We summarize the results of [11, 13, 14] which introduce what could in essence be thought
of as structural differential geometry. The idea, which originated in the work of Rosický [36],
was to axiomatize the structure of the tangent bundle functor on the category of smooth
manifolds.

It turns out that this set of axioms is both powerful enough to derive quite strong results,
yet general enough to apply to a great many settings. In addition to the category of smooth
manifolds being a tangent category, it is shown in [11] that the category of infinitesimally
and vertically linear objects in any model of synthetic differential geometry [27] is a tangent
category, as is any cartesian differential category [8]. A recent example of a very different
type comes from the calculus of functors [4].

Definition 3.1. Let C be a category. A tangent structure on C consists of the following
structure:

• A functor T : C → C (thought of as the tangent functor);

• A projection, i.e. a natural transformation p : T → idC;

• Fibre powers of p, i.e for each object M of C and each natural number n there is
a fibre product1 of n copies of pM , written as TnM → M , and this fibre product is
preserved by each iterate Tm of T ;

• Additive bundle structure, i.e natural transformations +: T2 → T and 0: id → T
making each projection pM an additive bundle, i.e., a commutative monoid in the slice
category over M in C;

• A vertical lift natural transformation ℓ : T // T 2such that for each M

(ℓM , 0M) : (p : TM //M,+, 0) // (Tp : T 2M // TM, T (+), T (0))

is an additive bundle morphism2;

• A canonical flip natural transformation c : T 2 // T 2 such that for each M

(cM , 1) : (Tp : T
2M // TM, T (+), T (0)) // (pT : T 2M // TM,+T , 0T )

is an additive bundle morphism;

1Recall that a fibre product of a family of morphisms with common codomain M in C is a product in the
slice category C/M . Each fibre product in C determines an associated diagram in C, called a fibre product

diagram, consisting of the base object M , the given family of morphisms, and the product projections for
the fibre product. Just as with pullbacks, fibre products are equivalently described as certain limits in C.

2I.e., the pair (ℓM , 0M ) is a morphism from pM to T (pM) in the arrow category and preserves the given
additive bundle structures in the evident sense (see [11, Definition 2.2]).
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• Coherence of ℓ and c: cc = 1 (so c is an isomorphism), ℓc = ℓ, and the following
diagrams commute:

T
ℓ //

ℓ
��

T 2

Tℓ
��

T 2
ℓT

// T 3

T 3 Tc //

cT
��

T 3 cT // T 3

Tc
��

T 3
Tc

// T 3
cT

// T 3

T 2

c
��

ℓT // T 3 Tc // T 3

cT
��

T 2
Tℓ

// T 3

• Universality of vertical lift: for each object M , if we define v : T2M // T 2M by
v := 〈π0ℓ, π10T 〉T (+), the following diagram is a pullback that is preserved by each T n:

T2(M)

π0p= π1p

��

v // T 2(M)

T (p)

��
M

0
// T (M)

A tangent category is a category equipped with a tangent structure. A tangent cate-
gory is said to have negatives if each of the above commutative monoids (pM ,+M , 0M) is
moreover an abelian group in the slice category over M .

While the axioms for a tangent category at first may appear ad-hoc, recent work of Leung
[31] and Garner [21] has shown how tangent categories are related to Weil algebras and how
tangent categories are a type of enriched category.

We note that the endofunctor T of a tangent category always has a canonical monad
structure (see [11, Proposition 3.4]). This formula was discovered independently by Jubin
[26] in the specific case of the tangent category of smooth manifolds.

Proposition 3.2. Let (C, T ) be a tangent category. Then T has a monad structure with
multiplication and unit given as follows:

T 2M
<Tp,pT> // T2M

+ // TM M
0 // TM

Before defining a notion of connection in tangent categories, it is helpful to have at hand
the following generalization of the notion of vector bundle, given in [13]:

Definition 3.3. A differential bundle in a tangent category consists of an additive bundle
(q : E //M,+q : E2

// E, 0q : M // E) with a map λ : E // T (E), called the lift, such
that

• finite fibre powers of q exist and are preserved by each T n;

• (λ, 0M) is an additive bundle morphism from (E, q,+q, 0q) to (T (E), T (q), T (+q), T (0q));

• (λ, 0q) is an additive bundle morphism from (E, q,+q, 0q) to (T (E), pE,+E, 0E);
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• the universality of the lift requires that the following be a pullback:

E2

π0q=π1q

��

µ:=〈π0λ,π10〉T (+q) // T (E)

T (q)
��

M
0

// T (M)

where E2 is the pullback of q along itself;

• the equation λℓE = λT (λ) holds.

We shall write q to denote the entire bundle structure (q,+q, 0q, λ).
Now let q and q′ be differential bundles. A bundle morphism between these bundles

simply consists of a pair of maps f1 : E // E ′, f0 : M //M ′ such that f1q
′ = qf0 (first

diagram below). A bundle morphism is linear in case, in addition, it preserves the lift, that
is f1λ

′ = λT (f1) (the second diagram below).

E

q

��

f1 // E ′

q′

��
M

f0

//M ′

E

λ
��

f1 // E ′

λ′

��
T (E)

T (f1)
// T (E ′)

Notably, every linear bundle morphism is automatically additive [13, Proposition 2.16].
In the present section, we shall tacitly assume that given differential bundles q satisfy the

following additional condition, which is a prerequisite for considering connections on such
bundles [14, Def. 2.2], [32, 3.1]:

For all natural numbers n and m, the n-th fibre power En →M of q has a pullback
along the projection TmM →M , and this pullback is preserved by each T k.

(3.i)

Of course, the crucial example of a differential bundle is the tangent bundle

pM = (pM ,+M , 0M , ℓM)

of an object M [13, Example 2.4], and we recommend keeping it in mind in the definitions
below. The tangent bundle always satisfies the preceding additional assumption [14, Example
2.3].

Given any differential bundle q = (q : E → M,+q, 0q, λ) we obtain an associated differ-
ential bundle

T (q) = (T (q) : TE → TM, T (+q), T (0q), T (λ)cE),

defined in [13, §2.3]. Hence TE underlies two differential bundles, namely T (q) and pE ,
whose underlying additive bundles appear in Definition 3.3.

We now recall the notion of connection as it is defined in [14] with respect to a tangent
category. In this formulation, a connection consists of two parts, a vertical connection and a
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horizontal connection, that are suitably compatible. Together, they split the tangent bundle
of a given bundle into vertical and horizontal components. A result of Patterson [35, Theorem
1] shows that vertical connections in the category of smooth manifolds correspond to one of
the standard formulations of the notion of connection: a covariant (or Koszul) derivative.
On the other hand, horizontal connections in smooth manifolds correspond to what are
known as linear Ehresmann connections [37, Definition 7.2.1]3. For smooth manifolds the
existence of a covariant derivative/vertical connection is equivalent to the existence of a
linear Ehresmann/horizontal connection [37, Proposition 7.5.11] but this is no longer the
case in a general tangent category. This led the authors of [14] to employ both notions at
once, as seen below.

A covariant derivative (or Koszul connection) is an operation on global sections of certain
bundles. Although this notion is one of the most standard formulations of connections, it is
inadequate for describing connections in a general tangent category as these are structures
internal to the given category and so cannot in general be characterized in terms of global
sections. However one can find an appropriate abstract definition based on the work of
Patterson [35].

Definition 3.4. Let q be a differential bundle on E over M . A vertical connection on
q is a map K : T (E) → E that is a retraction of λ : E → T (E) and satisfies the following
conditions:

[C.1] (K, p) : T (q) // q is a linear bundle morphism;

[C.2] (K, q) : pE // q is a linear bundle morphism.

Curvature in differential geometry is thought of as a measure of the extent to which a
geometric space deviates from being flat n-space [17]. It is typically defined for Riemannian
manifolds or, more generally, arbitrary manifolds equipped with a connection. Of particular
interest are those connections that have no curvature, that is, they are flat.

Definition 3.5. In a tangent category with a vertical connection K on a differential bundle
q, say that the vertical connection is flat if cT (K)K = T (K)K.

In the tangent category of smooth manifolds, this is equivalent to the usual definition,
by a result of Patterson [35, Theorem 2].

The closely related notion of torsion captures twisting effects that tangent vectors incur
when subject to parallel transport. Again, it is of particular interest to see when connections
have no torsion; that is, when they are torsion-free.

Definition 3.6. In a tangent category with a vertical connection K on the tangent bundle of
an object M (so that K : T 2(M) //T (M)), say that the vertical connection is torsion-free
if cK = K.

3Some authors such as Lang simply call these connections [30, pg. 104].
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Again, the equivalence of this definition with the standard one follows from a result of
Patterson [35, Theorem 3].

Linear Ehresmann connections also generalize to the setting of an arbitrary tangent
category, through the notion of horizontal connection [14]:

Definition 3.7. Let q be a differential bundle. A horizontal connection on q is a map
H : T (M) ×M E // T (E) that is a section of U = 〈T (q), p〉 and satisfies the following
conditions:

• (H, 1E) is a linear bundle morphism from q∗(pM) to pE;

• (H, 1T (M)) is a linear bundle morphism from p∗(q) to T (q).

Here, we write q∗(pM) (resp. p
∗(q)) to denote the pullback of pM along q (resp. of q along

pM) [13, Lemma 2.7], which exists as a consequence of our assumption (3.i); see [32, 2.4.7,
2.4.8, §3] for an explicit account of this existence.

As already noted, for smooth manifolds the notions of horizontal and vertical connection
are equivalent. In general tangent categories they are not, and this led Cockett and Cruttwell
to define a connection to be a pair consisting of one of each satisfying compatibility, as follows.

Definition 3.8 ([14, Def. 5.1]). A connection, (K,H), on a differential bundle q consists
of a vertical connection K on q and a horizontal connection H on q such that

• HK = π1q0q;

• 〈K, p〉µ + UH = 1T (E) where µ is as defined in 3.3 and the addition operation + is
induced by +E : T2E → TE.

These two conditions are called the compatibility conditions between H and K.

Proposition 3.9 ([14, Prop. 3.5]). In a Cartesian tangent category, any differential object
A (i.e. a differential bundle over 1) has a canonical connection (K,H) where H = π10 and
K is the principal projection p̂ : TA→ A associated to A ([13, §3], [14, Example 2.3]).

The third author proved that connections in a tangent category are equivalently described
as vertical connections satisfying a certain ‘exactness’ condition, as follows:

Theorem 3.10 ([32, 8.2(3)]). Let q = (q : E //M,+q, 0q, λ) be a differential bundle. Then
a connection on q is equivalently given by a vertical connection K : TE → E such that the
following is a fibre product diagram in C:

TE
T (q)

{{①①
①①
①①
①①

pE
��

K

!!❈
❈❈

❈❈
❈❈

❈

TM

pM ##❋
❋❋

❋❋
❋❋

❋❋
E

q

��

E

q}}④④
④④
④④
④④

M
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Corollary 3.11 ([32, 8.4(3)]). Let M be an object of a tangent category (C, T ). Then a
connection on the tangent bundle of M is equivalently given by a vertical connection K :
T 2M → TM on pM such that the following is a fibre product diagram in C:

T 2M
T (pM )

{{✈✈
✈✈
✈✈
✈✈
✈

pTM

��

K

##❍
❍❍

❍❍
❍❍

❍❍

TM

pM $$❍
❍❍

❍❍
❍❍

❍❍
TM

pM
��

TM

pMzz✈✈
✈✈
✈✈
✈✈
✈

M

(3.ii)

Given a morphism K as 3.11, the associated horizontal connection H is characterized by
the following:

Theorem 3.12 ([32, 7.8]). Given a vertical connection K : T 2M → TM on pM such that
(3.ii) is a fibre product diagram, there is a unique horizontal connection H such that (K,H)
is a connection on the tangent bundle of M in the sense of 3.8. Further, H is the unique
morphism H : TM ×M TM → T 2M such that

HT (pM) = π0, HpTM = π1, HK = p20M

where p2 : TM ×M TM →M is the projection.

In the present paper, we shall represent connections as morphisms K as in 3.10 and 3.11,
but we shall also make important use of the associated horizontal connection H . Moreover,
throughout the rest of the paper, we shall primarily be concerned with connections on the
tangent bundle of an object M . Thus, for brevity, rather than speak of a “connection on the
tangent bundle of M”, we shall simply say “connection on M”. (Connections on tangent
bundles are typically referred to as affine connections, but, in this paper, this would cause
an overload of the term “affine”.)

Definition 3.13. In view of Corollary 3.11 and the discussion above, we will call a morphism
K : T 2M → TM a connection on M if K is a vertical connection on the tangent bundle
of M and makes (3.ii) a fibre product diagram.

In section 8 in particular, we will make extensive use of the equational properties that
such a connection satisfies:

Proposition 3.14. If K is a connection on M , then

(a) (K is a retract of ℓ) ℓMK = 1TM ;

(b) (K is a bundle morphism) KpM = pTMpM = T (pM)pM ;

(c) (linearity of K) KℓM = ℓTMT (K) and KℓM = T (ℓM)cTMT (K);

10



(d) (additivity of K) 0TMK = pM0M , +TMK = 〈π0K, π1K〉+M , and T (0M)K = pM0M ,
T (+)K = 〈T (π0)K, T (π1)K〉+M .

Proof. Properties (a)-(c) follow directly from the definition of a vertical connection on the
tangent bundle (see [14, Lemma 3.3], while (d) follows since linear bundle morphisms are
additive, as noted above.

4 Jubin’s thesis

We now summarize relevant results of the unpublished Ph.D. thesis of Benoit Jubin [26]
that led us to consider the structures defined in this paper. Like Cockett and Cruttwell [11,
12, 13, 14], Jubin was interested in functorial properties of the tangent space construction.
He demonstrated that the tangent bundle functor was a monad on the category of smooth
manifolds, although he did not identify all of the additional structure that goes into the more
abstract definition of tangent category. However, he did derive several results specific to the
tangent functor on the category of smooth manifolds.

Theorem 4.1 (Jubin [26]).

• The tangent functor on the category of smooth manifolds carries a unique monad struc-
ture. Using local coordinates, the multiplication µ : T 2M → TM is given by

µ : T 2M → TM : (x, v, ẋ, v̇) 7→ (x, v + ẋ) .

The unit η : id → T is given by the zero section.

• There are no comonad structures on the tangent functor on the category of smooth
manifolds.

This monad structure exists in any tangent category and indeed appears in [11], as noted
above (3.2). But uniqueness depends crucially on the setting of smooth manifolds as does
the lack of comonads. These results do not follow from the axioms of tangent category. In
particular, we will construct a comonad on a specific tangent category in this paper.

Jubin also studies the category of affine manifolds (see §2). Affine manifolds are the
objects of a category Aff in which a morphism is a locally affine map, i.e. a smooth map
f : M → N such that for every pair of designated charts U ∼= V ⊆ Rn and U ′ ∼= V ′ ⊆ Rm

for M and N , respectively, the restriction of f to U ∩ f−1(U ′) has all its second partial
derivatives equal to zero.

Theorem 4.2. The tangent functor on smooth manifolds lifts to an endofunctor on the
category of affine manifolds Aff.

Proof. Jubin gives a proof of this result, but it also follows from the more general Theorem
6.1 below.
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Working in the smaller tangent category Aff , we have significantly more freedom to
define structures on the tangent functor. Indeed Jubin completely characterizes all monad
and comonad structures on the tangent functor on Aff. See Proposition 3.2.1 of [26]. Since
this takes place in a category of smooth manifolds, one can define the necessary structural
maps using local coordinates.

Theorem 4.3 (Jubin).

• The only monad structures on the tangent functor on the category Aff are indexed by
the real numbers, and for a fixed real number a the monad multiplication is given by
the following:

µa : T 2M → TM : (x, v, w, d) 7→ (x, v + w + ad)

In this case, the unit map for the monad must be the zero section.

• The only comonad structures on the tangent functor on the category Aff are indexed
by the real numbers, and for a fixed real number b the comultiplication is given by the
following:

δb : TM → T 2M : (x, v) 7→ (x, v, v, bv)

In this case, the counit map for the comonad is given by the bundle projection.

Jubin furthermore claims that the above monad and comonad structures interact to form
bimonads [33]. These are endofunctors with monad and comonad structure as well as a mixed
distributive law that relates the two structures and satisfies some additional axioms. Since
this structure on affine manifolds lifts to the more general setting of tangent categories, we
recall the details here.

Definition 4.4. Let C be a category and T an endofunctor on C. A bimonad structure

on T consists of a monad structure (µ, η) on T , a comonad structure (δ, ǫ) and a mixed dis-
tributive law, λ : T 2 → T 2, from the monad (T,µ, η) to the comonad (T, δ, ǫ) that additionally
satisfies the following requirements:

• ǫ is a monad morphism [3] from (T, µ, η) to the identity.

• η is a comonad morphism from the identity to (T, δ, ǫ).

• The following diagram commutes:

T 2

Tδ
��

µ // T
δ // T 2

T 3
λT

// T 3

Tµ

OO
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Theorem 4.5 (Jubin). The tangent functor T equipped with its a-monad structure and b-
comonad structure (Theorem 4.3) is a bimonad. The formula for the mixed distribution is
given by (using local coordinates):

λa,b : T 2M → T 2M : (x, v, w, d) 7→ (x, w, v + w + ad, bw − d)

Unfortunately, Jubin’s proof of this theorem (3.2.2 in [26]) contains some gaps. In par-
ticular, the proof given does not show that λ is a distributive law: it only shows that λ
satisfies the extra conditions required for a distributive law to be a bimonad. Fortunately,
we show in the much more general context of a tangent category that the given λ is indeed
a distributive law (8.14) and is part of a bimonad structure (8.15), thus filling in the gap in
Jubin’s proof while also generalizing it.

5 Geometric and affine structures in tangent categories

A manifold may carry further geometric structure, such as Riemannian structure, and it
is only with reference to such additional structure that one can define several important
aspects of its geometry, including geodesics, curvature, and parallel transport. The notion
of connection captures such structure by means of a formalism that is quite general yet still
supports all the latter geometric features, so that there is a sense in which a smooth space
carries a fixed geometry once it is equipped with a chosen connection. Thus we are led to
define the notion of geometric space in a tangent category C, as an object equipped with
a connection (5.1). In view of the Auslander-Markus theorem (2.2), the category of affine
manifolds has a natural generalization in an arbitrary tangent category, namely the category
of geometric spaces whose associated connection is flat and torsion-free. Thus we may pursue
certain of the themes of Jubin’s thesis within the category of affine geometric spaces in C,
which we now define:

Definition 5.1. Let (C, T ) be a tangent category.

• A geometric space in C is a pair (M,K) in which M is an object of C and K :
T 2M → TM is a connection on M (3.13).

• A geometric space (M,K) is flat (resp. torsion-free) if its associated connection K
is so (see 3.5 and 3.6).

• An affine geometric space in C is a geometric space (M,K) that is both flat and
torsion-free.

• A map of geometric spaces f : (M,K) → (M ′, K ′) is a map f : M → M ′ in C such
that the following diagram commutes:

T 2M

T 2f
��

K // TM

Tf
��

T 2M ′

K ′

// TM ′

13



• We write Geom(C, T ) to denote the category of geometric spaces, with the above mor-
phisms. We denote by Geomflat(C, T ) and Geomtf(C, T ) the full subcategories of Geom(C, T )
consisting of the flat and torsion-free geometric spaces, respectively.

• We write Aff(C, T ) to denote the full subcategory of Geom(C, T ) whose objects are the
affine geometric spaces.

Example 5.2. By Example 5.7 of [14], any differential object has a canonical choice of
connection, given by the formula

K = 〈T (p̂)p̂, pp〉

(its associated horizontal connection is H = 〈!0q, π0p̂, π1p̂, π1p〉). This connection is flat and
torsion-free (see the discussion after Proposition 3.16 and Example 3.21 in [14]). Thus, any
differential object has a canonical choice of connection to make it into an affine geometric
space.

Moreover, recall that if (A, p̂A) and (B, p̂B) are differential objects, then a linear map

between such objects consists of a map f : A //B such that T (f)p̂B = p̂Af . It is then easy
to show that such a map is also a map between the corresponding affine geometric spaces,
i.e., a map in Aff(C, T ).

Example 5.3. We note that any Riemannian manifold whose canonical connection (the
Levi-Civita connection) is flat is automatically affine, since the Levi-Civita connection is
always torsion-free. This gives us access to a wide variety of further examples.

Recall that the morphisms in the category Aff of affine manifolds are the locally affine
maps (§4). The following result shows that these are the same as maps that preserve the
associated connections:

Proposition 5.4. A smooth map f :M →M ′ between affine manifoldsM and M ′ is locally
affine if and only if f : (M,K) → (M ′, K ′) is a morphism of geometric spaces in the tangent
category (Mf, T ) of smooth manifolds, where K and K ′ are the associated connections (2.2).
Consequently, the category Aff of affine manifolds is equivalent to the category Aff(Mf, T ) of
affine geometric spaces in (Mf, T ).

Proof. In view of the Auslander-Markus Theorem (2.2), it suffices to prove the first statement
above, concerning a given map f . By definition, f : (M,K) → (M ′, K ′) is a morphism of
geometric spaces iff T 2(f)K ′ = KT (f). Since we are dealing with smooth manifolds, it
suffices to know that this equality holds in each of the given charts for M . However, by [2,
Thm. 1], the Christoffel symbols of the associated connections K and K ′ are identically zero
on each of the given charts, which means that in each of these charts, the connection K (and
similarly K ′) takes the particular form

(x, v, w, a) 7→ (x, a)

(see [14, Example 3.6.1] for the relationship of the Christoffel symbols to the vertical con-
nection K).
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For the remainder of the proof we will work locally; that is, we consider a pair of charts
U ∼= V ⊆ Rn and U ′ ∼= V ′ ⊆ Rm in M and M ′, respectively, and consider the restriction of
f to U ∩ f−1(U ′). For simplicity, we will also simply consider the case when m = 1. Recall
that in a chart U ⊆ Rn, for a point (x, v) ∈ TU ,

T (f)(x, v) = (f(x), D(f)(x, v))

where D(f)(x, v) is the directional derivative of f at x in the direction of v, and as a result

T 2(f)(x, v, w, a) = (f(x), D(f)(x, v), D(f)(x, w), D(D(f))((x, v), (w, a))).

Thus, by the form that K and K ′ take, we have

T (f)(K(x, v, w, a)) = T (f)(x, a) = (f(x), D(f)(x, a))

while
K ′(T 2(f)(x, v, w, a)) = (f(x), D(D(f))((x, v), (w, a))).

However, by definition of the directional derivative,

D(D(f))((x, v), (w, a)) =
∂[D(f)(x, v)]

∂x
·w+

∂[D(f)(x, v)]

∂v
·a = wT ·H(f)(x) ·v+D(f)(x, a)

where H is the Hessian of f , ie., the matrix of second partial derivatives of f .
Thus the two terms are equal if and only if

wT ·H(f)(x) · v = 0

for all x, v, w. But this is true if and only if each second partial derivative of f at x is equal
to 0. In other words, the map f is connection-preserving if and only if in each local affine
chart, and for each i, ∂f

∂xi
has each of its partial derivatives equal to 0.

Every map in Geom(C, T ) necessarily preserves the associated horizontal connection (5.6).
We will prove this by means of the following proposition:

Proposition 5.5. Suppose (f, g) : q // q′ is a linear map between differential bundles with
connections (K,H) and (K ′, H ′). Then

T (f)K ′ = Kf ⇔ (Tg × f)H ′ = HT (f).

Proof. Suppose T (f)K ′ = Kf . We have

〈K ′, p〉µ′ + U ′H ′ = 1

T (f)〈K ′, p〉µ′ + T (f)U ′H ′ = T (f)

〈K, p〉(f × f)µ′ + U(Tg × f)H ′ = T (f) (by Lemma 4.2 of [14])

〈K, p〉µT (f) + U(Tg × f)H ′ = T (f) (by Lemma 2.17 of [13])

H〈K, p〉µT (f) +HU(Tg × f)H ′ = HT (f)

0 + (Tg × f)H ′ = HT (f)
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as required. For the other direction, suppose (Tg × f)H ′ = HT (f). Then we have

〈K, p〉µ+ UH = 1

〈K, p〉µT (f) + UHT (f) = T (f)

〈K, p〉(f × f)µ′ + U(Tg × f)H ′ = T (f) (by Lemma 4.2 of [14])

〈K, p〉(f × f)µ′ + T (f)U ′H ′ = T (f) (by Lemma 2.17 of [13])

〈K, p〉(f × f)µ′〈K ′, p〉+ T (f)U ′H ′〈K ′, p〉 = T (f)〈K ′, p〉

〈K, p〉(f × f) = T (f)〈K ′, p〉

so that by taking the first projection of both sides, Kf = T (f)K ′, as required.

Corollary 5.6. If M and M ′ have connections (K,H) and (K ′, H ′), then for any map
f :M //M ′,

T 2(f)K ′ = KT (f) ⇔ T2(f)H
′ = HT 2(f).

Proof. By Proposition 2.4 of [14], the pair (T (f), f) is a linear bundle morphism from the
tangent bundle of M to the tangent bundle of M ′. Then applying the previous result (5.5)
to this linear bundle morphism gives the desired result.

6 Lifting tangent structure to the geometric categories

The main result we would like to prove in this section is the following:

Theorem 6.1. Let (C, T ) be a tangent category. There is a functor T∗ : Aff(C, T ) →
Aff(C, T ) given on objects as follows:

(M,K) 7→ (TM, T (c)cT (K)c)

This functor makes Aff(C, T ) a tangent category.

However, some of the structures that arise in proving this result will also lead us to prove
an interesting alternate characterization of flat torsion-free connections (Theorem 6.20).

Before proving the result above, we will pause to consider where the above formula comes
from. Given any strong morphism of tangent categories F : C → C′, in the sense of 6.2 below,
we shall show that F sends a connection on M in C to a connection on FM in C′ (6.5).
In particular, the tangent functor T : C → C is a strong morphism of tangent categories
when equipped with the transformation c, so by applying T to a connection K on M and
composing with a few instances of c we obtain an associated connection T (c)cT (K)c on TM .

Definition 6.2 ([11]). Given tangent categories (C, T, p, 0,+, ℓ, c) and (C′, T ′, p′, 0′,+′, ℓ′, c′),
a morphism of tangent categories is a functor F : C → C′ equipped with a natural
transformation α = αF : FT → T ′F such that F preserves all the pullbacks that are required
to exist as part of the tangent structure on C, and such that

αp′F = F (p), F (0)α = 0′F , F (+)α = α2+
′
F ,
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F (ℓ)α[2] = αℓ′F , F (c)α[2] = α[2]c′F .

Here α[2] = αTT
′(α) : FT 2 → T ′2F , and α2 : FT2 → T ′

2F is the natural transformation
whose components

F (TM ×M TM) = FTM ×FM FTM −→ T ′FM ×FM T ′FM

at each object M are induced by αM on each factor. A morphism of tangent categories (F, α)
is said to be strong if α is invertible, and strict if α is an identity.

Morphisms of tangent categories are the arrows of a category [11, Def. 2.7], in which
the composite of morphisms (F, αF ) : (C, T ) → (C′, T ′) and (G,αG) : (C′, T ′) → (C′′, T ′′) is
(GF, αF ∗ αG), where we define αF ∗ αG = G(αF )αG

F : GFT → T ′′GF .

6.3. A strong morphism of tangent categories F : (C, T ) → (C′, T ′) sends each differential
bundle q = (q : E →M,+q, 0q, λ) in C to a differential bundle

F (q) = (F (q), F (+q), F (0q), F (λ)α
F
E)

in C′, and this assignment is functorial with respect to linear morphisms of differential
bundles [13, Prop. 4.22].

Lemma 6.4. Let (F, α) : (C, T ) → (C′, T ′) be a strong morphism of tangent categories.
Then for each object M of C we have linear isomorphisms of differential bundles as follows:

1. (αM , 1FM) : F (pM)
∼
−→ p′FM ,

2. (α
[2]
M , αM) : F (pTM)

∼
−→ p′T ′FM .

3. (α
[2]
M , αM) : FT (pM)

∼
−→ T ′(p′FM),

Proof. The fact that 1 is a linear bundle morphism follows immediately from the axioms in
6.2. In particular, (αTM , 1FTM) : F (pTM) → p′FTM is a linear isomorphism, but we also know
that the isomorphism αM : FTM → T ′FM induces a linear isomorphism (T ′(αM), αM) :
p′FTM → p′T ′FM , and by composition we obtain the linear isomorphism needed in 2. Also,
the axioms for a tangent category yield linear isomorphisms (cM , 1TM) : T (pM) → pTM and
(c′FM , 1T ′FM) : T ′(p′FM) → p′T ′FM , so by the functoriality in 6.3, and the fact that c′ is an
involution, we obtain a linear composite

FT (pM)
(F (cM ),1FTM )
−−−−−−−−→ F (pTM)

(α
[2]
M

,αM )
−−−−−→ p′T ′FM

(c′
FM

,1T ′FM )
−−−−−−−−→ T ′(p′FM),

which can be expressed equally as (α
[2]
M , αM) since F (cM)α

[2]
Mc

′
FM = α

[2]
Mc

′
FMc

′
FM = α

[2]
M by

6.2.

Proposition 6.5. Let F : (C, T ) → (C′, T ′) be a strong morphism of tangent categories, and
let K : T 2M → TM be a connection on M in C. Then the composite

KF =

(

T ′2FM
α
[−2]
M−−−→ FT 2M

F (K)
−−−→ FTM

αM−−→ T ′FM

)

is a connection on FM , where α = αF and α[−2] = (α[2])−1.
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Proof. By 3.11 and 3.13, it suffices to show that KF is a vertical connection and that

T ′2FM
T ′(p′

FM
)

yyrrr
rr
rr
rr
r

p′
T ′FM
��

KF

%%▲▲
▲▲

▲▲
▲▲

▲▲

T ′FM

p′
FM &&▲▲

▲▲
▲▲

▲▲
▲▲

T ′FM

p′
FM

��

T ′FM

p′
FMxxrrr

rr
rr
rr
r

FM

(6.i)

is a fibre product diagram in C′.
By 3.11, we know that the diagram (3.ii) presents T 2M as a third fibre power of pM :

TM → M . But F preserves finite fibre powers of pM , so F sends the diagram (3.ii) to a
fibre product diagram

FT 2M
FT (pM )

yysss
ss
ss
ss
s

F (pTM )
��

F (K)

%%❑❑
❑❑

❑❑
❑❑

❑❑

FTM

F (pM) %%▲▲
▲▲

▲▲
▲▲

▲▲
FTM

F (pM )
��

FTM

F (pM )yyrrr
rr
rr
rr
r

FM

in C′. By composing with the isomorphism α
[−2]
M : T ′2FM → FT 2M , we find that the

morphisms
α
[−2]
M FT (pM), α

[−2]
M F (pTM), α

[−2]
M F (K) : T ′2FM → FTM

present T ′2FM as a third fibre power of F (pM) in C′. But F (pM) = αMp
′
FM : FTM → FM

since (F, α) is a morphism of tangent categories, so since α is an isomorphism we deduce
that the composites

f1 := α
[−2]
M FT (pM)αM , f2 := α

[−2]
M F (pTM)αM , f3 := α

[−2]
M F (K)αM : T ′2FM → T ′FM

present T ′2FM as a third fibre power of p′FM : T ′FM → FM in C′.
Hence, in order to show that (6.i) is a fibre product diagram, it suffices to show that

f1 = T ′(p′FM), f2 = p′T ′FM , f3 = KF . The third of these equations holds by the definition of
KF . The first two equations also hold, because

α
[2]
MT

′(p′FM) = αTMT
′(αM)T ′(p′FM) = αTMT

′F (pM) = FT (pM)αM

α
[2]
Mp

′
T ′FM = αTMT

′(αM)p′T ′FM = αTMp
′
FTMαM = F (pTM)αM

since (F, α) is a strong morphism and p′ is natural.
Now it suffices to show thatKF is a vertical connection on p′FM . Firstly, KF is a retraction

of ℓ′FM : T ′FM → T ′2FM since ℓ′FMKF = ℓ′FMα
[−2]
M F (K)αM = α−1

M F (ℓM)F (K)αM =
α−1
M F (ℓMK)αM = 1T ′FM , because ℓMK = 1TM . Hence it suffices to show that (KF , p

′
FM) :

T ′(p′FM) → p′FM and (KF , p
′
FM) : p′T ′FM → p′FM are linear morphisms of differential bundles.

But since K is a vertical connection on pM , we know that (K, pM) : T (pM) → pM and
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(K, pM) : pTM → pM are linear morphisms of differential bundles and so, by 6.3, are sent by
F to linear morphisms of differential bundles

(F (K), F (pM)) : FT (pM) → F (pM)

(F (K), F (pM)) : F (pTM) → F (pM) .

Hence by composition with the linear isomorphisms in 6.4 we obtain linear bundle morphisms

T ′(p′FM)
(α

[−2]
M

,α−1
M

)
−−−−−−→ FT (pM)

(F (K),F (pM))
−−−−−−−−→ F (pM)

(αM ,1FM )
−−−−−−→ p′FM

p′T ′FM

(α
[−2]
M

,α−1
M

)
−−−−−−→ F (pTM)

(F (K),F (pM))
−−−−−−−−→ F (pM)

(αM ,1FM )
−−−−−−→ p′FM .

But the pair (KF , p
′
FM) underlies each of these two composites.

Proposition 6.6. Let (F, α) : (C, T ) → (C′, T ′) be a strong morphism of tangent categories,
and let K : T 2M → TM be a connection on an object M of C. Then the horizontal
connection associated to the connection KF is the composite

HF =

(

T ′
2FM

α−1
2−−→ FT2M

F (H)
−−−→ FT 2M

α
[2]
M−−→ T ′2FM

)

,

recalling that α2 and α[2] are defined in 6.2.

Proof. By 3.12, it suffices to establish the following equations

HFT
′(p′FM) = π0, HFp

′
T ′FM = π1, HFKF = p′20

′
FM : T ′

2FM −→ T ′FM,

but we know that H satisfies the analogous equations HT (pM) = π0, HpTM = π1, HK =
p20M . Hence we compute that

HFT
′(p′FM) = α−1

2 F (H)α
[2]
MT

′(p′FM)
= α−1

2 F (H)FT (pM)αM (by 6.4(3))
= α−1

2 F (π0)αM

= π0α
−1
M αM (by the definition of α2)

= π0

HFp
′
T ′FM = α−1

2 F (H)α
[2]
Mp

′
T ′FM

= α−1
2 F (H)F (pTM)αM (by 6.4(2))

= α−1
2 F (π1)αM

= π1α
−1
M αM (by the definition of α2)

= π1
HFKF = α−1

2 F (H)α
[2]
Mα

[−2]
M F (K)αM

= α−1
2 F (H)F (K)αM

= α−1
2 F (p2)F (0M)αM

= α−1
2 F (p2)0

′
FM (by 6.2)

= p′20
′
FM

since it follows readily from 6.2 that α−1
2 F (p2) = p′2.
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Proposition 6.7. Let F : (C, T ) → (C′, T ′) be a strong morphism of tangent categories, and
let K : T 2M → TM be a connection on an object M of C.

1. If K is torsion-free, then KF is a torsion-free connection on FM .

2. If K is flat, then KF is a flat connection on FM .

Proof. If K is torsion-free, i.e. cMK = K, then

c′FMKF = c′FMα
[−2]
M F (K)αM = α

[−2]
M F (cM)F (K)αM = α

[−2]
M F (K)αM = KF

by 6.2. Suppose that K is flat, i.e. cTMT (K)K = T (K)K : T 3M → TM . Then

T ′(KF )KF = T ′(α
[−2]
M )T ′F (K)T ′(αM)T ′(α−1

M )α−1
TMF (K)αM

= T ′(α
[−2]
M )T ′F (K)α−1

TMF (K)αM

= T ′(α
[−2]
M )α−1

T 2M
FT (K)F (K)αM

= T ′(α
[−2]
M )α−1

T 2M
F (T (K)K)αM

= T ′2(α−1
M )T ′(α−1

TM)α−1
T 2M

F (T (K)K)αM

= T ′2(α−1
M )α

[−2]
TMF (T (K)K)αM

by the naturality of α−1 and the definition of α[−2]. Hence

c′T ′FMT
′(KF )KF = c′T ′FMT

′2(α−1
M )α

[−2]
TMF (T (K)K)αM

= T ′2(α−1
M )c′FTMα

[−2]
TMF (T (K)K)αM

= T ′2(α−1
M )α

[−2]
TMF (cTM)F (T (K)K)αM

= T ′2(α−1
M )α

[−2]
TMF (T (K)K)αM

= T ′(KF )KF .

by 6.2 and the naturality of c′.

Proposition 6.8. Every strong morphism of tangent categories F : (C, T ) → (C′, T ′) induces
a functor

F∗ : Geom(C, T ) → Geom(C′, T ′)

given on objects by (M,K) 7→ (FM,KF ) and on morphisms by f 7→ F (f). The analogous
claims hold with each of Geomflat, Geomtf , and Aff replacing Geom, and in each case we shall
denote the resulting functor also by F∗.

Proof. By 6.5 and 6.7, it suffices to show that if f : (M,K) → (M ′, K ′) is a morphism in
Geom(C, T ), then F (f) : (FM,KF ) → (FM ′, K ′

F ) is a morphism in Geom(C′, T ′). But this
follows immediately from the definitions, using the naturality of α and α[−2].

6.9. Given morphisms of tangent categories F,G : (C, T ) → (C′, T ′), a tangent transfor-
mation φ : F ⇒ G is a natural transformation such that αFT ′(φ) = φTα

G [13, Def. 4.18].
It is straightforward to show that tangent transformations are closed under vertical compo-
sition and are closed under whiskering with morphisms of tangent categories. Hence, in view
of 6.2, we obtain a 2-category Tan whose objects are tangent categories, whose 1-cells are
strong morphisms, and whose 2-cells are tangent transformations.
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Lemma 6.10. Let F,G : (C, T ) → (C′, T ′) be strong morphisms of tangent categories, and
let φ : F ⇒ G be a tangent transformation. Then for any connection K on an object M of
C, the component φM underlies a morphism

φM : (FM,KF ) −→ (GM,KG) (6.ii)

in Geom(C′, T ′). Further, there is a natural transformation

φ∗ : F∗ ⇒ G∗ : Geom(C, T ) → Geom(C′, T ′)

whose component at each object (M,K) of Geom(C, T ) is the morphism (6.ii).

Proof. The first claim follows immediately from the naturality of αF and αG, and the second
is immediate.

Theorem 6.11. There are 2-functors

Geom, Geomflat, Geomtf , Aff : Tan → Cat

from the 2-category Tan of tangent categories (6.9) to the 2-category Cat of categories, send-
ing each tangent category (C, T ) to Geom(C, T ), Geomflat(C, T ), Geomtf(C, T ), and Aff(C, T ),
respectively. These 2-functors are given on 1-cells by 6.8 and on 2-cells by 6.10.

Proof. By employing the definitions, as well as the middle-interchange law for Cat, it is
straightforward to verify the needed functoriality on 1-cells. Functoriality with respect to
vertical composition of 2-cells is immediate, as is the preservation of whiskering by Geom

(and hence by the others).

We now apply this theorem in order to show that Geom(C, T ) and Aff(C, T ) are tangent
categories, by way of the following general lemma.

Lemma 6.12. Let (C, T,+, 0, ℓ, c) be a tangent category.

1. [13] (T, c) : (C, T ) → (C, T ) is a strong morphism of tangent categories.

2. [13] (Tn, cn) : (C, T ) → (C, T ) is a strong morphism of tangent categories for each
natural number n, where cn : TnT → TTn is the unique morphism such that cnT (πi) =
πic for each i = 0, ..., n− 1 when we write πi : Tn → T to denote the projection.

3. The following are tangent transformations

p : (T, c) =⇒ (1, 1T ), + : (T2, c2) =⇒ (T, c), 0 : (1, 1T ) =⇒ (T, c),

ℓ : (T, c) =⇒ (T, c)2, c : (T, c)2 =⇒ (T, c)2, πi : (Tn, cn) =⇒ (T, c)

for all natural numbers n, i with i < n, where (T, c)2 = (T, c) ◦ (T, c) = (T 2, c ∗ c) is the
composite 1-cell in Tan, where c ∗ c = T (c)cT : T 3 → T 3 (6.2).
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Proof. It suffices to prove 3. Firstly, p, 0, ℓ, c are tangent transformations since cT (p) =
pT = pT1T , 1TT (0) = T (0) = 0T c, ℓT (c ∗ c) = ℓTT (c)cT = cT (ℓ), and cT (c ∗ c) = cTT (c)cT =
T (c)cTT (c) = (c∗ c)T (c), by the axioms for a tangent category. The definition of cn immedi-
ately entails that each πi is a tangent transformation. With regard to +, one of the axioms
for a tangent category entails that (c, 1TM) : pTM → T (pM) is an additive bundle morphism,
so by the definition of c2 we deduce that

T2TM

+TM

��

(c2)M // TT2M

T (+M )
��

TTM cM
// TTM

commutes.

Corollary 6.13. Given a tangent category (C, T ), we can apply the 2-functor Aff : Tan →
Cat to the 1-cells T, Tn : (C, T ) → (C, T ) and 2-cells p,+, 0, ℓ, c in Tan in order to obtain
functors

T∗, (Tn)∗ : Aff(C, T ) → Aff(C, T )

and natural transformations

p∗ : T∗ =⇒ 1, +∗ : (T2)∗ =⇒ T∗, 0∗ : 1 =⇒ T∗

ℓ∗ : T∗ =⇒ T 2
∗ , c∗ : T

2
∗ =⇒ T 2

∗ , (πi)∗ : (Tn)∗ =⇒ T∗

for all natural numbers n, i with i < n. We can similarly apply Geom,Geomflat,Geomtf to the
same data in order to obtain endofunctors and natural transformations, for which we employ
the same notations.

In order to show that 6.13 yields a tangent structure on Aff(C, T ), we shall need certain
finite limits in the latter category. To this end we shall employ the following:

Lemma 6.14. Let D : J → Geom(C, T ) be a functor, and let π = (πj : L → Dj)j∈J be a
cone on D. Writing U : Geom(C, T ) → C for the forgetful functor, suppose that π is sent by
U to a limit cone for UD that is preserved by T k for each natural number k. Then

(i) π is a limit cone for D,

(ii) this limit is preserved by each of the endofunctors T k
∗ on Geom(C, T ).

Proof. Let us write Dj = (UDj,Kj) for each object j of J, and write L = (L0, L1). Given
any cone (fj : (M,K) → Dj)j∈J on D, we know that (fj : M → UDj)j∈J is a cone on UD
and hence induces a morphism f :M → L0 in C. For each j ∈ ob J we compute that

KT (f)T (πj) = KT (fj) = T 2(fj)Kj = T 2(f)T 2(πj)Kj = T 2(f)L1T (πj)
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since fj and πj are morphisms in Geom(C, T ), so since (T (πj) : TL0 → TUDj)j∈J is a limit
cone in C we deduce that KT (f) = T 2(f)L1. Hence f : (M,K) → L is a morphism in
Geom(C, T ). Thus (i) is proved.

For each natural number k, we know that T k
∗ (π) = (T k

∗ (πj))j∈J is a cone on the diagram
T k
∗D and is sent by U to a limit cone (T k(πj) : T

kL0 → T kUDj)j∈J for the diagram UT k
∗D =

T kUD : J → C. Further, the latter limit is preserved by T k′ for each natural number k′, so
we can apply (i) to the cone T k

∗ (π) in order to deduce that T k
∗ (π) is a limit cone for T k

∗D.

The preceding lemma immediately entails the following:

Lemma 6.15. Let (C, T ) be a tangent category. Then for each natural number n and
each object M of Aff(C, T ), the morphisms (πi)∗M : (Tn)∗M → T∗M present (Tn)∗M as
an n-th fibre power of p∗M : T∗M → M in Aff(C, T ), and this fibre power is preserved by
T k
∗ : Aff(C, T ) → Aff(C, T ) for each natural number k. The analogous claims hold with each

of Geom,Geomflat,Geomtf in place of Aff.

Theorem 6.16. Let (C, T ) be a tangent category. Then each of the categories Geom(C, T ),
Geomflat(C, T ), Geomtf(C, T ), and Aff(C, T ) is a tangent category when equipped with its
endofunctor T∗ and natural transformations p∗, 0∗,+∗, ℓ∗, c∗ as defined in 6.13.

Proof. All of the needed structure is furnished by 6.13 and 6.15. This structure satisfies the
equational axioms for a tangent category, by the 2-functoriality of Geom, Geomflat, Geomtf ,
and Aff : Tan → Cat, so it remains only to verify the universality of the vertical lift [13, Def.
2.1]. It suffices to treat the case of Geom(C, T ), from which the needed property of each of
the other categories then follows. For each object M of the category D = Geom(C, T ), we
must show that a particular commutative square S in D is a pullback that is preserved by
each T n

∗ [13, Def. 2.1], where S is defined in terms of the (candidate) tangent structure on
D. But the square S is sent by the forgetful functor U : D → C to the similarly defined
square in C, which we know is a pullback in C that is preserved by each T n. Hence by 6.14
we deduce that S is a pullback square in D that is preserved by each T n

∗ .

Hence Theorem 6.1 is proved.

Remark 6.17. Given an object (M,K) of Geom(C, T ), recall that T∗(M,K) = (TM,KT )
(6.8). By 6.5 we obtain the following explicit formula for the connection KT : T 3M → T 2M
on TM :

KT = c
[−2]
M T (K)cM = (cTMT (cM))−1T (K)cM = T (cM)cTMT (K)cM .

For brevity, we will often write this formula as

KT = T (c)cT (K)c.

Letting H be the horizontal connection induced by K, we deduce by 6.6 that the associ-
ated horizontal connection HT : T2TM → T 3M induced by KT is

HT = (cM × cM)T (H)c
[2]
M = (cM × cM)T (H)cTMT (cM)
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where cM × cM : T2TM = T 2M ×TM T 2M → T 2M ×TM T 2M = TT2M is induced by cM on
each factor. For brevity, we write this formula also as

HT = (c× c)T (H)cT (c).

The following results will be useful when working with the maps KT and HT :

Lemma 6.18. If (M,K) ∈ Geom(C, T ), then:

(i) KTT (p) = T 2(p)K;

(ii) T (ℓ)KT = Kℓ.

Proof. (i) asserts precisely that pM : T∗(M,K) = (TM,KT ) → (M,K) is a morphism in
Geom(C, T ), but this is immediate from 6.13/6.16 since we have a natural transformation
p∗ : T∗ ⇒ 1 : Geom(C, T ) → Geom(C, T ) with components p∗(M,K) = pM . For (ii) we
compute that

T (ℓ)KT

= T (ℓ)T (c)cT (K)c

= T (ℓc)cT (K)c

= T (ℓ)cT (K)c

= Kℓc (by linearity of K)

= Kℓ

as required.

Lemma 6.19. If (M,K) ∈ Geom(C, T ) then

HTT
2(p) = (T (p)× T (p))H.

Proof. We have

HTT
2(p)

= (c× c)T (H)cT (c)T 2(p)

= (c× c)T (H)cT (cT (p))

= (c× c)T (H)cT (p)

= (c× c)T (H)p

= (c× c)pH

= (cp× cp)H

= (T (p)× T (p))H

as required.
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6.1 Alternate characterizations of flat torsion-free connections

The fact that a connection on an objectM can be lifted to a connection on TM (and then on
T 2M , etc.) leads to two alternate characterizations of when a connection is flat torsion-free.
One of these characterizations ((iii) in the result below) effectively says that “a connection
is flat torsion-free if and only if it is connection-preserving”. If we think of a connection
K : T 2M // TM as a ‘multiplication’, the second characterization says that this operation
is ‘associative’. These characterizations appear to be new in standard differential geometry.

Theorem 6.20. Suppose that (M,K) ∈ Geom(C, T ). Then the following are equivalent:

(i) K is flat and torsion-free.

(ii) KTK = T (K)K.

(iii) K is a morphism in Geom(C, T ) from (T 2M,KT 2) to (TM,KT ).

Proof. We first prove that (i) implies (ii). Assuming that K is flat and torsion-free, consider

KTK

= T (c)cT (K)cK

= T (c)cT (K)K (since K torsion-free)

= T (c)T (K)K (since K flat)

= T (cK)K

= T (K)K (since K torsion-free).

so that we have (ii).

Next, we prove that (i) implies (iii). Assuming that K satisfies (i), we can apply Theorem
6.16 and Remark 6.17 to deduce that KT also satisfies (i). Hence, since we have already
proved that (i) implies (ii), we deduce that both K and KT satisfy (ii), a fact that we shall
use in the following computations. For K to be a morphism in Geom(C, T ) between the
objects in (iii), we must show that

KT 2T (K) = T 2(K)KT .

These are both maps into T 2M . Now by Corollary 3.11, T 2M is the fibre product of three
copies of TM , with projections K, T (p), p. So, to show the equality of the above maps, it
suffices to show their equality when followed by these three projections. For the equality
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with K, consider

KT 2T (K)K

= KT 2KTK (by (ii))

= T (KT )KTK (by (ii), applied to KT )

= T (KT )T (K)K (by (ii))

= T (KTK)K

= T (T (K)K)K (by (ii))

= T 2(K)T (K)K

= T 2(K)KTK (by (ii))

For the equality with p, consider

KT 2T (K)p

= KT 2pK (by naturality of p)

= ppK (by definition of a connection)

= T 2(K)pp (by naturality of p)

= T 2(K)KTp (by definition of a connection)

Finally, for the equality with T (p), consider

KT 2T (K)T (p)

= KT 2T (Kp)

= KT 2T (pp) (by definition of a connection)

= KT 2T (p)T (p)

= T 2(p)KTT (p) (by 6.18(i))

= T 2(p)T 2(p)K (by 6.18(i))

= T 2(pp)K

= T 2(Kp)K (by definition of a connection)

= T 2(K)T 2(p)K

= T 2(K)KTT (p) (by 6.18(i))

as required.

We will now prove (iii) implies (ii). Suppose that T 2(K)KT = KT 2T (K). Then compos-
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ing both sides of the equation on the left by T (ℓ) and on the right by K, we get

T (ℓ)T 2(K)KTK = T (ℓ)KT 2T (K)K

T (ℓT (K))KTK = KT ℓT (K)K (using lemma 6.18, applied to KT )

T (Kℓ)KTK = KTKℓK (linearity of K)

T (K)T (ℓ)KTK = KTK (definition of connection)

T (K)KℓK = KTK (by lemma 6.18)

T (K)K = KTK (definition of a connection)

so that we have (ii).

Finally, we will show that (ii) implies (i). Suppose that KTK = T (K)K; in other words,

T (c)cT (K)cK = T (K)K (⋆).

Composing both sides of this equation on the left by T (ℓ)c gives

T (ℓ)cT (c)cT (K)cK = T (ℓ)cT (K)K

cℓcT (K)cK = T (ℓ)cT (K)K (by coherence of ℓ and c)

cℓT (K)cK = T (ℓ)cT (K)K

cKℓcK = KℓK (by both linearities of K)

cKℓK = K (by definition of a connection)

cK = K (by definition of a connection)

So we have proven that K is torsion-free. Applying cK = K to ⋆, we get

T (c)cT (K)K = T (K)K.

Now apply T (c) to both sides of this equation to get

T (c)T (c)cT (K)K = T (c)T (K)K

cT (K)K = T (cK)K

cT (K)K = T (K)K (since K torsion-free)

so that K is flat. Thus, we have proven (i).
Altogether, we have proven

(i) ⇒ (iii) ⇒ (ii) ⇒ (i),

and so all three conditions are equivalent.

This result also allows us to prove several useful results about objects in the affine cate-
gory.
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Corollary 6.21. If (M,K) ∈ Aff(C, T ) then:

(i) KTK = T (K)K;

(ii) K is a morphism in Aff(C, T ) from (T 2M,KT 2) to (TM,KT ) and provides (M,K) with
the structure of a flat torsion-free connection in Aff(C, T ).

(iii) The maps from (ii) form the components of a natural transformation from T 2
∗ to T∗ :

Aff(C, T ) // Aff(C, T ).

Proof. (i) and the fact that K is a morphism in Aff(C, T ) were proved in the theorem.
Moreover, as the tangent structure on Aff(C, T ) is lifted from (C, T ), this also shows that K
is a flat torsion-free connection on (M,K) in the tangent category Aff(C, T ).

Finally, that these maps form a natural transformation from T 2
∗ to T∗ on Aff(C, T ) fol-

lows directly from the definition of maps in Aff(C, T ), namely that such maps preserve the
associated connections of the objects.

7 The 2-comonad of affine geometric spaces

In 6.11 we saw that there are 2-functors Geom,Aff : Tan → Cat that send each tangent
category (C, T ) to the categories of geometric spaces and affine geometric spaces in (C, T ),
respectively. As a consequence we found that Geom(C, T ) and Aff(C, T ) are tangent cate-
gories (6.16), so it is natural to wonder whether Geom and Aff lift to 2-functors valued in
Tan. We now address this question, and we show that Aff underlies a 2-comonad, whose
coalgebras are tangent categories whose objects carry affine geometric structure. Here we
employ the standard notion of (strict) 2-monad (as employed, for example, in [6]).

Definition 7.1. Let (C, T ) be a tangent category. Each of the following fibre products in C

will be called a basic fibre product in (C, T ): (1) Each fibre product of the form TnM , and
(2) each pullback witnessing the universality of the vertical lift [13, Def. 2.1]. A class of

endemic fibre products in (C, T ) is a class F of finite fibre product diagrams in C that
is closed under the application of T and contains each basic fibre product. There is clearly
a smallest class of endemic fibre products in (C, T ), consisting of the fibre product diagrams
obtained by repeatedly applying T to the basic fibre product diagrams.

Concretely, we shall represent finite fibre product diagrams in C as certain functors
D : Jn → C on categories Jn defined as follows. For each natural number n, Jn is a partially
ordered set with n+ 2 distinct elements 1, 2, ..., n,⊥,⊤, in which ⊥ is a bottom element, ⊤
is a top element, and the remaining elements 1, 2, ..., n are mutually incomparable.

Definition 7.2. There is a 2-category Tane whose objects (C, T,F) are tangent categories
with a given class of endemic fibre products F . A 1-cell F : (C, T,F) → (C′, T ′,F ′) in Tane

is a strong morphism of tangent categories that preserves endemic fibre products, i.e. sends
fibre product diagrams in F to fibre product diagrams in F ′. The 2-cells in Tane are simply
tangent transformations.
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Proposition 7.3. Let (C, T,F) be a tangent category with endemic fibre products, and let
U = UC : Geom(C, T ) → C denote the forgetful functor. Then Geom(C, T ) carries a class of
endemic fibre products U∗(F), consisting of all diagrams of the form D : Jn → Geom(C, T )
with UD ∈ F . The functor U underlies a strict morphism of tangent categories, which
in turn underlies a 1-cell U : (Geom(C, T ), T∗, U

∗(F)) → (C, T,F) in Tane. Further, the
analogous results hold with each of Aff, Geomflat, and Geomtf in place of Geom.

Proof. Given any diagram D : Jn → Geom(C, T ) in U∗(F), we know that UD ∈ F and
hence T kUD ∈ F for every k ∈ N, by induction on k. Therefore UD is a fibre product
diagram in C that is preserved by each T k, so by 6.14 we deduce that D is a fibre product
diagram in Geom(C, T ). Note also that T∗D ∈ U∗(F), since UT∗D = TUD ∈ F .

Hence U∗(F) is a class of fibre product diagrams in Geom(C, T ), and U∗(F) is closed un-
der the application of T∗. In view of the construction of the tangent structure on Geom(C, T )
in 6.16 and 6.15, it is clear that the basic fibre products in Geom(C, T ) are sent by U to
basic fibre products in (C, T ) and hence lie in U∗(F).

We shall now prove that Geom lifts to a 2-endofunctor on Tane. We begin with the
following general observation:

Lemma 7.4. Let (F, α) : (C, T ) → (C′, T ′) be a morphism of tangent categories. Then
α : FT ⇒ T ′F underlies a tangent transformation

α : (F, α) ◦ (T, c) =⇒ (T ′, c′) ◦ (F, α) : (C, T ) → (C′, T ′)

where c, c′ denote the canonical flips carried by C,C′, respectively (cf. 6.12).

Proof. Using the definition of composition of morphisms of tangent categories (6.2), we first
note that (F, α)◦(T, c) = (FT, c∗α) and (T ′, c′)◦(F, α) = (T ′F, α∗c′) where c∗α = F (c)αT :
FTT ⇒ T ′FT and α ∗ c′ = T ′(α)c′F : T ′FT ⇒ T ′T ′F . Hence it suffices to show that the
diagram

FTT

αT

��

c∗α // T ′FT

T ′(α)
��

T ′FT
α∗c′

// T ′T ′F

commutes. Indeed,

αT (α ∗ c′) = αTT
′(α)c′F = α[2]c′F = F (c)α[2] = F (c)αTT

′(α) = (c ∗ α)T ′(α)

since (F, α) is a morphism of tangent categories (6.2).

Theorem 7.5. There is a 2-functor

Geom : Tane → Tane

sending each tangent category with endemic fibre products (C, T,F) to the tangent category
Geom(C, T ) of geometric spaces in (C, T ), equipped with its associated class of endemic fibre
products U∗(F) (7.3). Similarly, there are 2-functors Geomflat,Geomtf ,Aff : Tane → Tane

sending (C, T,F) to the tangent categories of flat, torsion-free, and affine geometric spaces
in (C, T ), respectively.
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Proof. We shall treat the case of Geom; the other 2-functors are obtained similarly, using
6.11. Letting F : (C, T,F) → (C′, T ′,F ′) be a 1-cell in Tane, we know that the associated
isomorphism αF : FT ⇒ T ′F is a tangent transformation and so is a 1-cell in Tan. Hence we
can apply Geom : Tan → Cat to αF in order to obtain an invertible 2-cell αF

∗ : F∗T∗ ⇒ T ′
∗F∗ :

Geom(C, T ) → Geom(C′, T ′) in Cat. We claim that (F∗, α
F
∗ ) : Geom(C, T ) −→ Geom(C′, T ′)

is a 1-cell in Tane. Indeed, employing the notation of 7.3, we reason that for each D ∈ U∗
C(F)

the composite F∗D lies in U∗
C′(F ′), since UC′F∗D = FUCD ∈ F ′ because UCD ∈ F . Hence

F∗ preserves endemic fibre products and so, in particular, sends basic fibre product diagrams
to fibre product diagrams. Also, since Geom : Tan → Cat is 2-functorial and F is a strong
morphism of tangent categories, it follows that (F∗, α

F
∗ ) satisfies the equational axioms for a

morphism of tangent categories (6.2).
This defines the needed assignment on 1-cells, and the functoriality of this assignment

readily follows from the 2-functoriality of Geom : Tan → Cat. Given a 2-cell φ : F ⇒
G : (C, T,F) → (C′, T ′,F ′) in Tane, we can apply Geom : Tan → Cat to obtain a natural
transformation φ∗ : F∗ ⇒ G∗ : Geom(C, T ) → Geom(C′, T ′) in Cat, which is in fact a tangent
transformation

φ∗ : (F∗, α
F
∗ ) ⇒ (G∗, α

G
∗ ) : Geom(C, T ) → Geom(C′, T ′)

since φ∗T∗
αG
∗ = (φTα

G)∗ = (αFT ′(φ))∗ = αF
∗ T

′
∗(φ∗) by the 2-functoriality of Geom : Tan →

Cat. Again using the latter 2-functoriality, the result now follows.

Theorem 7.6. There is a 2-comonad Aff = (Aff, ε, δ) on Tane whose underlying 2-functor

Aff : Tane → Tane

sends each tangent category with endemic fibre products, (C, T,F), to the tangent category
Aff(C, T ) of affine geometric spaces in (C, T ). The counit 1-cell

ε(C,T,F) : Aff(C, T ) → (C, T )

in Tane is the forgetful functor, and the comultiplication 1-cell

δ(C,T,F) : Aff(C, T ) → Aff(Aff(C, T )) (7.i)

sends each affine geometric space (M,K) in (C, T ) to the affine geometric space ((M,K), K)
in Aff(C, T ).

Proof. By 7.3, we know that each forgetful functor ε(C,T,F) is a strict morphism of tangent
categories and is also a 1-cell in Tane. Further, it is immediate from the definitions that this
defines a 2-natural transformation ε : Aff → 1Tane .

With regard to the comultiplication δ, recall that if (M,K) is an affine geometric space in
a tangent category (C, T ), then K : T 2

∗ (M,K) → T∗(M,K) is a flat torsion-free connection
on (M,K) in Aff(C, T ) (6.21), so ((M,K), K) is an affine geometric space in Aff(C, T ),
i.e. an object of Aff(Aff(C, T )). For each object (C, T,F) of Tane, this defines δ(C,T,F)
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on objects. Given a morphism f : (M,K) → (M ′, K ′) in Aff(C, T ), it is immediate that
δ(C,T,F)(f) = f : ((M,K), K) → ((M ′, K ′), K ′) defines a morphism in Aff(Aff(C, T )). Thus
we obtain a functor δ(C,T,F) as in (7.i). The diagram of functors

Aff(C, T )

PP
PP

PP
PP

PP
PP

PP
PP

PP
PP

PP
PP

δ(C,T,F)// Aff(Aff(C, T ))

εAff(C,T )

��
Aff(C, T )

(7.ii)

clearly commutes, and εAff(C,T ) is a strict morphism of tangent categories and is also a
faithful functor, so it follows that δ(C,T,F) is a strict morphism of tangent categories. Using
the commutativity of this diagram, we also find that δ(C,T,F) preserves endemic fibre products
(since εAff(C,T ) reflects endemic fibre products). Hence δ(C,T,F) is a 1-cell in Tane.

This defines a natural transformation δ : Aff → Aff ◦Aff, since if F : (C, T,F) →
(C′, T ′,F ′) is a 1-cell in Tane then the diagram

Aff(C, T )

F∗

��

δ // Aff(Aff(C, T ))

(F∗)∗
��

Aff(C′, T ′)
δ

// Aff(Aff(C′, T ′))

commutes. Indeed, for each object (M,K) of Aff(C, T ) we compute that

(F∗)∗(δ(M,K)) = (F∗)∗((M,K), K) = (F∗(M,K), KF∗
) = ((FM,KF ), KF∗

)
= ((FM,KF ), KF ) = δ(FM,KF ) = δ(F∗(M,K))

since the definitions of KF and KF∗
readily entail that

KF∗
= KF : T ′

∗
2
(FM,KF ) → T ′

∗(FM,KF )

by the 2-functoriality of Aff = (−)∗ : Tan → Cat. Commutativity on morphisms is immedi-
ate. The resulting natural tranformation δ is, moreover, 2-natural, as one readily verifies.

We already know that (Aff, ε, δ) satisfies one of the co-unit laws (7.ii). For the other, we
must show that the composite

Aff(C, T )
δ(C,T,F)
−−−−→ Aff(Aff(C, T ))

U∗−→ Aff(C, T )

is the identity, where U = ε(C,T,F). But this is nearly immediate, since this composite sends
each object (M,K) to (M,KU), while KU = K since the forgetful functor U is a strict
morphism of tangent categories.

For the co-associativity law, we must show that the diagram

Aff(C, T )

δ(C,T,F)

��

δ(C,T,F) // Aff(Aff(C, T ))

(δ(C,T,F))∗
��

Aff(Aff(C, T ))
δAff(C,T )

// Aff(Aff(Aff(C, T )))
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commutes. But the definitions readily entail that both composites send an object (M,K) of
Aff(C, T ) to (((M,K), K), K), and the commutativity on arrows is immediate.

Definition 7.7. An affine tangent category is an Eilenberg-Moore Aff-coalgebra, for the
2-comonad Aff = (Aff, ε, δ) defined in 7.6. Hence affine tangent categories are the objects of
a 2-category, namely the Eilenberg-Moore 2-category for the 2-comonad Aff.

Proposition 7.8. An affine tangent category is equivalently given by a tangent category with
endemic fibre products (C, T,F) in which each object M is equipped with a flat torsion-free
connection KM such that

1. every morphism f :M → N in C preserves the given connections KM and KN , in the
sense that KMT (f) = T 2(f)KN , and

2. for each object M of C, the following diagram commutes:

T 3M

KTM

��

T (cM )// T 3M
cTM // T 3M

T (KM )
��

T 2M cM
// T 2M

Proof. Suppose that we are given an Aff-coalgebra ((C, T,F), A), i.e. an object (C, T,F) of
Tane together with a 1-cell A : (C, T,F) → Aff(C, T ) in Tane making the following diagrams
commute in Tan:

(C, T )

▲▲
▲▲

▲▲
▲▲

▲▲

▲▲
▲▲

▲▲
▲▲

▲▲

A // Aff(C, T )

ε(C,T,F)

��

(C, T )

A
��

A // Aff(C, T )

A∗

��
(C, T ) Aff(C, T )

δ(C,T,F)

// Aff(Aff(C, T ))

(7.iii)

Since U = ε(C,T,F) is the forgetful functor, the unit law UA = 1 entails that A must send
each objectM of C to an object of the form (M,KM) with KM a flat torsion-free connection
on M . For each morphism f in C, as in 1, we have U(A(f)) = f , so that A(f) = f :
(M,KM) → (N,KN) and 1 holds.

We claim that A is necessarily a strict morphism of tangent categories. Indeed, since
UA = 1(C,T ) in Tan and U is a strict morphism, it follows that the structural isomorphism
αA : AT → T ∗A has U(αA) = 1T : UAT = T → T = UT ∗A, so that each of its components

αA
M : ATM = (TM,KTM) → T ∗AM = (TM, (KM)T )

is a morphism in Aff(C, T ) whose underlying morphism in C is 1TM . Hence 1TM preserves
the connections KTM and (KM)T , in the sense that KTMT (1TM) = T 2(1TM)(KM)T , i.e.
KTM = (KM)T , so 2 holds since by definition (KM)T = T (cM)cTMT (KM)cM and cM = c−1

M .
We now deduce also that AT = T ∗A as functors and that αA is the identity transformation
on AT .
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Conversely, suppose that (C, T,F) is a tangent category with endemic fibre products and
an assignment M 7→ KM satisfying 1 and 2. Then we can define a functor A : C → Aff(C, T )
on objects by AM = (M,KM) and on arrows by A(f) = f , whereupon UA = 1C as functors.
Hence it is immediate that A preserves endemic fibre products, since U reflects endemic fibre
products. In view of the above, 2 asserts precisely that KTM = (KM)T for each object M ,
i.e. that ATM = T ∗AM as objects. But it then follows immediately that AT = T ∗A as
functors, so since UA = 1C and U is faithful and is a strict morphism of tangent categories,
it follows that A is a strict morphism of tangent categories. Hence A is a 1-cell in Tane,
and clearly UA = 1(C,T,F) in Tane. In the rightmost diagram in (7.iii), each 1-cell is a strict
morphism of tangent categories, so the diagram commutes in Tane as soon as the underlying
diagram in Cat commutes. Indeed, for each object M of C we compute that

A∗(AM) = A∗(M,KM) = (AM, (KM)A) = ((M,KM), KM) = δ(C,T,F)(AM)

since it follows readily from the definitions that (KM)A = KM : T 2
∗ (M,KM) → T∗(M,KM),

and the commutativity on arrows is immediate.

Example 7.9. Given any tangent category with endemic fibre products, (C, T,F), the cat-
egory of affine geometric spaces Aff(C, T ) is an affine tangent category, since it is a cofree
Aff-coalgebra.

8 Structures in the affine categories

In the previous sections, we showed how the affine category associated to a tangent category
is itself a tangent category, and investigated the resulting 2-functor. In the remainder of the
paper we focus on further structure carried by the affine categories themselves. In particular,
we generalize many of the results of Jubin [26] regarding the existence of various monads,
comonads, and distributive laws in these affine categories.

Proving these results will require extensive calculations. In particular, we will make
frequent use of both the axioms of a tangent category (Definition 3.1) and the basic properties
of a connection K (Proposition 3.14). As we use many of these axioms frequently and
in conjunction with other axioms, we will occasionally not explicitly refer to the specific
axioms or properties by name. Moreover, we will also make use of the following notational
conventions:

• Throughout, we assume that (C, T ) is a tangent category.

• In the previous sections, we let T∗ denote the tangent functor in the affine category;
here, we will simply write it as T .

• Similarly, for an object (M,K) in the affine category, objects such as TM , T 2M , etc.
will be assumed to be equipped with their canonical choice of connections (eg., TM is
equipped with the connection T (c)cT (K)c, as per Remark 6.17).
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• We will let + denote not only the natural transformation + : T2 // T , but also the
n-fold addition +n : Tn // T .

Related to this last point, in our definitions and calculations, we will often add the same
term repeatedly. To faciliate handling such sums, we make the following definitions.

Definition 8.1. Suppose f : X //TM is a map in C. Define f · 0 := fp0 : X //TM , and
for any a ∈ Z>0,

f · a := 〈f, f, . . . f〉+ : X // TM

(where there are a copies of f). Similarly, if (C, T ) has negatives, with the negation denoted
n : TM // TM , then define

f · (−a) := 〈fn, fn, . . . fn〉+ : X // TM

(where there are a copies of fn).

Note that for any g : Y //X , g(f · a) = (gf · a). More generally, for any collection of
maps from a common domain X to TM such that the composites of each of these maps with
pM are equal, one can add such maps, and the resulting addition operation is associative,
unital, and commutative (since pM : TM //M is a commutative monoid in X/M). In our
proofs, we will often speak informally of summing such terms.

8.1 Monads

We begin by investigating monad structure on the tangent functor in the affine category.
Recall from Section 4 that Jubin showed that for any real number a, one could define a
monad on the category of affine manifolds, whose functor was the tangent functor, the unit
the projection, and the multiplication µa : T 2 // T defined in local coordinates by

(x, v, ẋ, v̇) 7→ (x, v + ẋ+ av̇).

Our goal is to translate this definition to the affine category of a tangent category.
Now, in any tangent category, given an object M , we have the map pTM : T 2M // TM .

In local coordinates in the category of smooth manifolds, this is given by

(x, v, ẋ, v̇) 7→ (x, v).

We also have the map T (pM) : T 2M // TM , which in local coordinates is given by

(x, v, ẋ, v̇) 7→ (x, ẋ).

However, none of the structural maps of a tangent category have the following effect in local
coordinates:

(x, v, ẋ, v̇) 7→ (x, v̇). (8.i)
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If we move to the affine category of a tangent category, however, we have more structure
available. Specifically, an object in the affine category by definition comes equipped with the
connection map K : T 2M // TM , which, since the connection is affine, is itself a map in
the affine category (see Corollary 6.21). Moreover, for the canonical connection associated
to an affine manifold, the effect of K in local coordinates is exactly (8.i) (see the proof of
Proposition 5.4).

Now, it is easy to check (as is done in the definition below) that the morphisms pTM , T (pM),
and K are all equal when post-composed by pM . Thus, in the affine category, we can con-
struct the tuple

T 2M
〈K,K,K,...K,T (pM),pTM 〉 // Ta+2M

(where there are a copies of K). We can then apply + : Ta+2M // TM , to get a map
µa : T 2M // TM . Moreover, in local coordinates + is simply addition of tangent vectors,
so that in local coordinates, the map

µa := 〈K,K,K, . . .K, T (pM), pTM〉+

is precisely
(x, v, ẋ, v̇) 7→ (x, v + ẋ+ av̇).

(Note that with our notational conventions described above, by associativity of +, we can
more simply describe µa as 〈K · a, T (pM), pTM〉+; this is the form we use below).

Thus, the additional structure of the affine category allows us to define a map that
generalizes Jubin’s monad multiplication in the category of affine manifolds. Our goal in
this section is then to show that this map gives rise to monad structure in the more general
setting of the affine category of a tangent category.

We begin by showing that this map is well defined, and investigate some of its basic
properties.

Proposition 8.2. For (M,K) an object of Aff(C, T ), and a ∈ Z≥0, define

µa
(M,K) := 〈K · a, T (pM), pTM〉+ : T 2M // TM.

If (C, T ) has negatives, similarly define µa
(M,K) for any a ∈ Z<0. Then each µa

(M,K) is a

well-defined map in Aff(C, T ), and µa
(M,K)pM = pTMpM .

Proof. Using properties of the vertical connection K,

KpM = pTMpM = T (pM)pM

so 〈K · a, T (pM), pTM〉 is a well-defined map into the fibre product Ta+2M , and µa
(M,K)pM =

pTMpM . It is in Aff(C, T ) since K is in Aff(C, T ) (by Corollary 6.21) and the tangent
structure on C lifts to Aff(C, T ).
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Note that the case a = 0 is the map 〈Tp, p〉+, which exists in any tangent category and
is already known to be the multiplication for a monad (see Proposition 3.2).

To prove that each µa provides the multiplication for a monad structure on Aff(C, T ) will
require a number of extensive calculations. To shorten the length of these calculations, we
will typically omit the subscript on µa

(M,K) and on the tangent category transformations (as

we have done in some previous calculations, e.g., in the proof of Lemma 6.18).

Theorem 8.3. For each a ∈ Z≥0, Ta := (T, µa, 0) is a monad on Aff(C, T ). Moreover, if
(C, T ) has negatives, then the result also holds for each a ∈ Z.

Proof. The naturality of each µa follows from Corollary 6.21(iii) and from the naturality of
p and +.

The unital conditions follow immediately since K preserves both additive structures on
T 2, as well as using the tangent category axioms:

0µa = 0〈K · a, T (p), p〉+ = 〈p0 · a, p0, 1〉+ = 1,

and
T (0)µa = T (0)〈K · a, T (p), p〉+ = 〈p0 · a, T (1), p0〉+ = 1.

For associativity of the monad, we need to show that

T (µa)µa = µa
Tµ

a.

First, consider

T (µa)µa = T (µa)〈K · a, T (p), p〉+ = 〈T (µa)K · a, T (µa)T (p), T (µa)p〉+ (⋆)

The last two terms in this sum are straightforward to address:

T (µa)T (p) = T (µap) = T (pp)

(by Lemma 8.2) and

T (µa)p = pµa = p〈K · a, T (p), p〉+ = 〈pK · a, pT (p), pp〉+.

So in total these two terms contribute one T (pp), one pT (p), one pp, and a copies of pK to
the sum in ⋆.

The first term of the sum in ⋆ (without the ·a) is

T (µa)K

= 〈〈T (K), T (K), . . . T (K)〉T (+), T 2(p), T (p)〉T (+)K

= 〈〈T (K)K, T (K)K, . . . T (K)K〉+, T 2(p)K, T (p)K〉+ (by additivity of K)

so that this term has a copies of T (K)K, one of T 2(p)K, and one of T (p)K. Since there are
a of each of these terms, combining with the results above, ⋆ is equal to

〈T (K)K · (a2), T 2(p)K · a, T (p)K · a, pK · a, T (pp), pT (p), pp〉+.
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We now consider µa
Tµ

a. This is equal to

µa
T 〈K · a, T (p), p〉+ = 〈µa

TK · a, µa
TT (p), µ

a
Tp〉+ (†).

We consider each of the terms in this sum separately:

µa
TK

= 〈KT · a, T (p), p〉+K

= 〈KTK · a, T (p)K, pK〉+ (by additivity of K)

= 〈T (K)K · a, T (p)K, pK〉+ (by Corollary 6.21)

Since there are a copies of µa
TK in †, in total this gives a2 copies of T (K)K, a of T (p)K,

and a of pK.
The next term in † is

µa
TT (p)

= 〈KT · a, T (p), p〉+T (p)

= 〈KTT (p) · a, T (p)T (p), pT (p)〉+ (by naturality of +)

= 〈T 2(p)K · a, T (pp), pT (p)〉+ (by Lemma 6.18)

The final term in † is µa
Tp = pp by Proposition 8.2. Putting all these results together, we

get that † is equal to

〈T (K)K · (a2), T (p)K · a, pK · a, T 2(p)K · a, T (pp), pT (p), pp〉+

By commutativity of +, this is equal to ⋆, and hence we have proven associativity of the
monad, as required.

We can also show that some of Jubin’s results on algebras for the monads hold in tangent
categories.

Lemma 8.4. For any object (M,K) of Aff(C, T ), ((M,K), pM) is an algebra for each monad
Ta.

Proof. This is straightforward, as by Proposition 8.2,

µap = pp = T (p)p

and by the tangent category axioms, 0p = 1.

Each algebra of Ta has an associated endomorphism of TM with some interesting prop-
erties; in particular, this endomorphism has the property that when applied twice, it gives
the sum of a copies of itself (for the case of smooth manifolds, this is on page 30 of Jubin’s
thesis [26]).
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Proposition 8.5. Suppose that ((M,K), h) is an algebra for Ta in Aff(C, T ). Then the
endomorphism

ψh :=

(

TM
ℓM // T 2M

T (h) // TM

)

has the property that
ψhh = (1 · a)h

and
ψhψh = ψh · a.

Proof. For the first claim, consider:

ψhh

= ℓT (h)h

= ℓµah (since h is an algebra)

= ℓ〈K · a, T (p), p〉+h

= 〈1 · a, p0, p0〉+h (properties of ℓ and K)

= (1 · a)h

For the second claim, consider

ψhψh

= ℓT (h)ℓT (h)

= ℓℓT 2(h)T (h) (naturality of ℓ)

= ℓℓT (T (h)h)

= ℓℓT (µah) (since h is an algebra structure for µa)

= ℓℓT (µa)T (h)

= ℓℓ〈T (K), . . . T (K), T 2(p), T (p)〉T (+)T (h) (with a copies of T (K))

= 〈ℓℓT (K), . . . ℓℓT (K), ℓT (p)ℓ, ℓp0〉T (+)T (h) (using naturality and coherence of ℓ)

= 〈ℓKℓ, . . . ℓKℓ, p0ℓ, p00〉T (+)T (h) (property of K, tan. cat. axiom)

= 〈ℓ, . . . ℓ, p0T (0), p0T (0)〉T (+)T (h) (property of K, tan. cat. axiom)

= 〈ℓ, . . . ℓ〉T (+)T (h) (T (0) the unit for T (+))

Now, note that by coherence of ℓ, ℓT (p)T (0) = p0T (0) = p00 = ℓp0, so that by [13, Lemma
2.6(ii)], the above becomes

〈ℓ, . . . ℓ〉+T (h)

which, by naturality of +, becomes

〈ℓT (h), . . . ℓT (h)〉+ = a · (ℓT (h)) = a · ψh,

as required.
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Note that for the algebra pM , the associated endomorphism ψpM is the 0 morphism, as

ψpM = ℓT (p) = p0.

8.2 Comonads

The goal of this section is to generalize some of Jubin’s results on comonads in the affine
category. In section 4 we saw that for any real number b, Jubin defined δb : T // T 2 with
local coordinate description

(x, w) 7→ (x, w, w, b · w) ,

which was the comultiplication for a comonad structure on T . We would like to define an
analogue of this map in the affine category of a tangent category.

Any tangent category has a natural transformation that bears some similarities to the
transformation above: the map

v :=

(

T2
〈π0ℓ,π10〉T (+) // T 2

)

(defined in the universality of the vertical lift axiom) has local coordinate description

(x, w1, w2) 7→ (x, w2, 0, w1)

We can modify this map to instead use b copies of ℓ:

vb :=

(

T2
〈π0ℓ·b,π10〉T (+) // T 2

)

;

its effect in local coordinates is

(x, w1, w2) 7→ (x, w2, 0, b · w1) .

This is not yet the desired map δb. However, we will use it in the definition of δb. Thus, we
first describe its properties; note that this map exists in any tangent category, not just the
affine category of a tangent category.

Proposition 8.6. For each object M of (C, T ), and each b ∈ Z≥0, define

vbM := 〈π0ℓ · b, π10〉T (+) : T2M // T 2M,

with a similar definition for any b ∈ Z<0 if (C, T ) has negatives. Then vbM is well defined,
and (omitting the subscripts):

(i) vbp = π1;

(ii) vbT (p) = π0p0 = π1p0;

(iii) If K is a connection on M , then vbK = π0 · b.
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Proof. Note that π0ℓT (p) = π0p0 = π1p0 = π10T (p), so 〈π0ℓ · b, π10〉 defines a map into the
pullback T (T2M); thus vbM is well-defined. This calculation also proves (ii).

For (i), using naturality and additivity of p,

vbp = 〈π0ℓ · b, π10〉T (+)p = 〈π0ℓp · b, π10p〉+ = 〈π0p0 · b, π1〉+ = π1.

For (iii), using the fact that K is additive and a retract of ℓ,

vbK = 〈π0ℓ · b, π10〉T (+)K = 〈π0ℓK · b, π10K〉+ = 〈π0 · b, π1p0〉+ = π0 · b.

Now, while we also have the maps 0TM : TM //T 2M and T (0M) : TM //T 2M , which
have the effects

(x, w) 7→ (x, w, 0, 0) and (x, w) 7→ (x, 0, w, 0),

and the addition maps +TM and T (+M), no combination of these additions or zeros with vb

gives the desired map. What is required is a map from TM to T 2M that has local coordinate
effect

(x, w) 7→ (x, w, w, 0).

While we do not have such a map from the general structure of a tangent category, we do have
such a map in the affine category of a tangent category. In particular, if H is the associated
horizontal connection of an object (M,K) (see Theorem 3.12) in the affine category, one can
readily check that 〈1, 1〉H : TM // T 2M has precisely the local coordinate effect above. If
we then consider 〈1, 1〉〈vb, H〉+, it has the local effect

(x, w) 7→ (x, w, w) 7→ ((x, w, 0, b · w), (x, w, w, 0)) 7→ (x, w, w, b · w) ,

which is exactly what we want.

Proposition 8.7. For any (M,K) ∈ Aff(C, T ), and each b ∈ Z≥0, define

δb(M,K) := 〈1, 1〉〈vb, H〉+ : TM // T 2M

(where H is the corresponding horizontal connection associated to K—Theorem 3.12) with
a similar definition for any b ∈ Z<0 if (C, T ) has negatives. Then δb(M,K) is well-defined, a

map in Aff(C, T ), and (dropping the subscripts)

(i) δbp = 1;

(ii) δbT (p) = 1;

(iii) δbK = 1 · b.
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Proof. By Proposition 8.6(i), vbp = π1, and since H is a horizontal connection, Hp = π1.
Thus 〈vb, H〉 defines a map into the pullback T2(TM) and so δbM,K is well defined. Moreover,

δbp = 〈1, 1〉π1 = 1

as required for (i). By Corollary 6.21, since K is a connection on (M,K) in Aff(C, T ), by
Theorem 3.12, it has a unique compatible horizontal connection Aff(C, T ); since this would
also be a horizontal connection in (C, T ), it must be H itself. Thus H is a map in Aff(C, T ),
and as a result δb is as well.

For (ii), using Proposition 8.6(ii) and the fact that H is a horizontal connection,

δbT (p) = 〈1, 1〉〈vb, H〉+T (p) = 〈1, 1〉〈vbT (p), HT (p)〉+ = 〈1, 1〉〈π0p0, π0〉+ = 〈p0, 1〉+ = 1.

Finally, for (iii), using Proposition 8.6(iii) and the fact that H is a horizontal connection,

δbK = 〈1, 1〉〈vb, H〉+K = 〈1, 1〉〈vbK,HK〉+ = 〈1, 1〉〈π0 · b, π1p0〉+ = 〈1 · b, p0〉+ = 1 · b,

as required.

For ease of notation, we will usually omit the subscripts on these maps. With the
definition in hand, we can now prove it gives comonad structure.

Theorem 8.8. For each b ∈ Z≥0, T
b := (T, δb, p) is a comonad on Aff(C, T ); if (C, T ) has

negatives then the result also holds for any b ∈ Z.

Proof. By Corollary 5.6, the horizontal connections H associated to the objects (M,K) in
Aff(C, T ) form the components of a natural transformation in Aff(C, T ) from T2 to T

2. Since
the other components of δb are elements of the tangent structure (which lifts to Aff(C, T )),
each δb is thus a natural transformation from T to T 2 in Aff(C, T ).

The co-unit equations follow immediately from Proposition 8.7 (i and ii).
For co-associativity, we need to show that δbT (δb) equals δbδbT ; these are maps into T 3M .

Recall from Corollary 3.11 that since TM has a connection (K,H), T 2M is a fibre product of
three copies of TM with projections K, T (p), p (thus, this is a jointly monic triple). That is,
T 2M is isomorphic to T3M with the above projections. But then since T preserves this fibre
product, T 3M is the fibre product of three copies of T 2M with projections T (K), T 2(p), T (p):

T 3M
T (K)

zz✈✈
✈✈
✈✈
✈✈
✈

T 2(p)
��

T (p)

$$❍
❍❍

❍❍
❍❍

❍❍

T 2M

T (p) $$■
■■

■■
■■

■■
T 2M

T (p)
��

T 2M

T (p)zz✉✉
✉✉
✉✉
✉✉
✉

TM
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But, as above, each of these copies of T 2M is a fibre product with projections K, T (p), p.
Moreover, since Kp = T (p)p = pp,

T (K)T (p) = T 2(p)T (p) = T (p)T (p),

and so T 3M is isomorphic to T7M , with the seven projections

T (K)K, T (K)p, T 2(p)K, T 2(p)p, T (p)K, T (p)p, T (K)T (p) = T 2(p)T (p) = T (p)T (p).

Thus, the above is a jointly monic 7-tuple, and so to check the equality of δbT (δb) and δbδbT ,
it suffices to check that the two are equal when post-composed by each of the above 7 maps.

We will first show that these two terms are equal when post-composed by p. Indeed,
using Proposition 8.7(i),

δbT (δb)p = δbpδb = δbδbTp.

Thus, we know the terms are equal when post-composed by T (K)p = pK, T 2(p)T (p) =
pT (p), and T (p)p = pp.

We can also show that the terms are equal when post-composed by T (p), using Proposi-
tion 8.7 (i and ii):

δbT (δb)T (p) = δbT (δbp) = δb = δbδbTT (p).

Thus, the terms are equal when post-composed by T (p)T (p) and T (p)K.
For equality when post-composing with T (K)K, consider:

δbT (δb)T (K)K

= δbT (δbK)K

= δbT (1 · b)K (by Proposition 8.7(iii))

= δb〈1, 1, . . .1〉T (+)K

= δb〈K,K, . . .K〉+ (since K additive)

= δb(K · b)

while

δbδbTT (K)K

= δbδbTKTK (by Corollary 6.21)

= δb(1 · b)K (by Proposition 8.7(iii))

= δb(K · b) (since K additive)

so that the terms are equal when post-composed by T (K)K.
Finally, we need to check equality when post-composed by T 2(p)K. First, using Propo-

sition 8.7(ii and iii), we have

δbT (δb)T 2(p)K = δbT (δbT (p))K = δbK = 1 · b.

42



On the other hand,

δbδbTT
2(p)K

= δbδbTKTT (p) (by naturality of K)

= δb(1 · b)T (p) (by Proposition 8.7(iii))

= δb(T (p) · b) (by naturality of +)

= 1 · b (by Proposition 8.7(ii))

Thus δbT (δb) and δbδbT are equal when post-composed by each of the maps in the jointly
monic 7-tuple, and so are equal, as required for co-associativity.

In section 8.1, we found examples of algebras for each of the monads Ta, and found some
structure associated to these algebras. As we shall see here, related results hold for the
coalgebras of the comonads Tb.

Lemma 8.9. For any object (M,K) of Aff(C, T ), ((M,K), 0M) is a coalgebra for each of
the comonads Tb.

Proof. First, note that using additivity of ℓ,

〈0, 0〉vb = 〈0ℓ · b, 00〉T (+) = 00

and then using this and additivity of H ,

0δb = 〈0, 0〉〈vb, H〉+ = 00 = 0T (0)

Moreover, by a tangent category axiom, 0p = 1. So 0M is a coalgebra for (δb, 0).

Note that in general, a coalgebra for Tb will be a vector field, since the co-unit of the
comonad is p. Moreover, we also have the following results (for smooth manifolds, these are
found on page 30 of [26]).

Proposition 8.10. Suppose that ((M,K), j) is a coalgebra for Tb in Aff(C, T ). Then the
endomorphism

φj :=

(

TM
T (j) // T 2M K // TM

)

has the property that
jφj = j · b

and
φjφj = φj · b.

43



Proof. For the first claim,

jφj

= jT (j)K

= jδbK (since j a coalgebra)

= j(1 · b) (by Proposition 8.7(iii))

= (j · b)

For the second claim, consider

φjφj

= T (j)KT (j)K

= T (j)T 2(j)KTK (since j is a map in Aff(C, T ) from (M,K) to (TM,KT ))

= T (j)T 2(j)T (K)K (by Corollary 6.21(i))

= T (jT (j)K)K

= T (jδbK)K (since j is a coalgebra)

= T (j(1 · b))K (by Proposition 8.7(iii))

= 〈T (j), . . . T (j)〉T (+)K (where there are b instances of T (K))

= 〈T (j)K, . . . T (j)K〉+ (by additivity of K)

= T (j)K · b

= φj · b

as required.

Note that for the coalgebra j = 0M , the associated map φ0M is simply the zero vector at
each point, as by additivity of K,

φ0M = T (0M)K = p0.

8.3 Distributive laws

We now consider distributive laws between the various monads and comonads defined in the
previous sections. Part of what we do here fills in a gap in Jubin’s work. In Jubin’s thesis
[26], he claimed that for each a, b ∈ Z, there was a natural transformation λa,b : T 2 // T 2

on the category of affine manifolds so that the triple (Ta,T
b, λa,b) was a bimonad. Now,

part of the definition of a bimonad is that the map λa,b should be a distributive law from
the monad Ta to the comonad Tb. However, Jubin does not prove this in his thesis: he
instead proves the additional conditions for a distributive law to be a bimonad (see page 31
of [26]). Fortunately, this is merely an omission and not an error: in this section, we define
a generalization of Jubin’s λa,b maps for tangent categories with negatives, and indeed show
that they are distributive laws.
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However, we also prove the existence of other distributive laws. The canonical flip c :
T 2 // T 2, an element of any tangent category, is highly compatible with the monads and
comonads defined above: we show in this section that it is a distributive law from any of
the possible monads or comonads defined above to any of the other possible monads or
comonads.

We begin with the results on c being a distributive law in many different ways, as this
will require no additional assumptions on the tangent category. To define Jubin’s λa,b maps,
we will need to assume the tangent category has negatives. As far as we are aware, all results
in this section are new, even for smooth manifolds.

Theorem 8.11. For any a1, a2, b1, b2 ∈ Z≥0, c : T
2 // T 2 is a distributive law from Ta1 to

Ta2 , Ta1 to Tb1, Tb1 to Ta1 , and from Tb1 to Tb2. If (C, T ) has negatives, a similar result
holds for any a1, a2, b1, b2 ∈ Z.

Proof. The equations to prove all of these various results have some commonalities; to prove
all of these requires proving that for appropriate a, b,

(1) T (0)c = 0 and T (0) = 0c,

(2) cT (c)µa
T = T (µa)c and µa

T c = T (c)cT (µa),

(3) cT (p) = p and T (p) = cp,

(4) δbTT (c)c = cT (δb) and cδbT = T (δb)cTT (c).

However, note that since c2 = 1, each of the pairs of equations in (1)-(4) are equivalent
to each other. Thus, we only need to prove one of each pair. Moreover, (1) and (3) are
automatic from the equations of a tangent category. Thus, it suffices to prove one of the
equations in (2) and one of the equations in (4). Here is the calculation for the first equation
in (2) (using a variety of tangent category axioms):

cT (c)µa
T

= cT (c)〈KT · a, T (p), p〉+

= cT (c)〈T (c)cT (K)c · a, T (p), p〉+

= 〈cT (c)T (c)cT (K)c · a, cT (cp), cT (c)p〉+

= 〈T (K)c · a, cT (T (p)), cpc〉+

= 〈T (K)c · a, T 2(p)c, T (p)c〉+

= 〈T (K) · a, T 2(p), T (p)〉T (+)c (since c is additive)

= T (〈K · a, T (p), p〉+)c

= T (µa)c

To conclude, we prove the first equation in (4): δbTT (c)c = cT (δb). For this, we will first
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show that vbTT (c)c = (c× c)T (vb):

vbTT (c)c

= 〈π0ℓ · b, π10〉T (+)T (c)c

= 〈π0ℓ · b, π10〉T (+c)c

= 〈π0ℓ · b, π10〉T (〈π0c, π1c〉T (+))c (additivity of c)

= 〈π0ℓ · bT (c), π10T (c)〉T
2(+)c (T preserves the relevant pullback)

= 〈〈π0ℓ, . . . π0ℓ〉+ T (c)c, π10T (c)c〉T
2(+) (naturality of c)

= 〈〈π0ℓT (c), . . . π0ℓT (c)〉+ c, π1c0c〉T
2(+) (naturality of + and 0)

= 〈〈π0ℓT (c)c, . . . π0ℓT (c)c〉T (+), π1cT (0)〉T
2(+) (additivity of c)

= 〈〈π0cT (ℓ), . . . π0cT (ℓ)〉T (+), π1cT (0)〉T
2(+) (by a tangent category axiom)

while

(c× c)T (vb)

= (c× c)T (〈π0ℓ · b, π10〉T (+))

= (c× c)〈〈π0T (ℓ), . . . π0T (ℓ)〉T (+), π1T (0)〉T
2(+) (T preserves the pullback)

= 〈〈π0cT (ℓ), . . . π0cT (ℓ)〉T (+), π1cT (0)〉T
2(+)

so that indeed vbTT (c)c = (c× c)T (vb). Using various tangent category axioms, we also have
that

HTT (c)c = (c× c)T (H)cT (c)T (c)c = (c× c)T (H)cc = (c× c)T (H).

Thus

δbTT (c)c

= 〈1, 1〉〈vbT , HT 〉+T (c)c

= 〈1, 1〉〈vbTT (c)c,HTT (c)c〉T (+) (naturality of + and additivity of c)

= 〈1, 1〉〈(c× c)T (vb), (c× c)T (H)〉T (+) (by the results above)

= 〈c, c〉〈T (vb), T (H)〉T (+)

= c〈1, 1〉T (〈vb, H〉+)

= c〈T (1), T (1)〉T (〈vb, H〉+)

= cT (〈1, 1〉〈vb, H〉+)

= cT (δb)

as required.

Now we would like to define an analogue of Jubin’s distributive laws. For each a, b ∈ Z,
he wished to define a distributive law of Ta over Tb. Since his definition involved negatives
(even for a, b positive), an analogous definition in a tangent category will require that the
tangent category have negatives. The formula for the distributive law in the general set-
ting was arrived at through similar reasoning to that described for finding the monad and
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comonad structures: investigating Jubin’s local coordinate definition and finding the appro-
priate analogues in a tangent category. Specifically, we first define for each b ∈ Z a map
αb : T 2M // TM , whose effect in local coordinates is

(x, v, w, d) 7→ (x, bw − d).

Using this map, we then define, for each a, b ∈ Z, λa,b : T 2M // T 2M , whose effect in local
coordinates is

(x, v, w, d) 7→ (x, w, v + w + ad, bw − d).

This is how Jubin defines his distributive laws. We first check that we can define these maps
in tangent categories, then show that they satisfy the axioms required to be distributive
laws.

Proposition 8.12. Suppose that (C, T ) has negatives, and (M,K) is an object of Aff(C, T ).
For each b ∈ Z, define

αb
(M,K) := 〈Kn, T (p) · b〉+ : T 2M // TM,

and for each a, b ∈ Z, define

λa,b(M,K) = 〈〈αbℓ, T (p)0〉T (+), 〈µa, T (p)〉H〉+ : T 2M // T 2M.

Then αb and λa,b are well-defined morphisms in Aff(C, T ) and give rise to natural transfor-
mations. Further,

(i) λa,bp = T (p);

(ii) λa,bT (p) = µa;

(iii) λa,bK = αb.

Proof. By Corollary 6.21, K is a morphism in Aff(C, T ), and since the equations Knp =
Kp = T (p)p hold in Aff(C, T ) we find that 〈Kn, T (p) · b〉 defines a map into the pullback
T2(M) in Aff(C, T ), so αb is well defined.

To show that λa,b is well-defined, first consider

αbℓT (p) = αbp0 = T (p)p0 = T (p)0T (p),

so that 〈αbℓ, T (p)0〉 defines a map into the pullback T (T2M) ∼= T 2M ×TM T 2M in Aff(C, T ).
Also,

µap = pp = T (p)p,

so 〈µa, T (p)〉 defines a map into the pullback T2(M). Finally, by various tangent category
axioms,

〈αbℓ, T (p)0〉T (+)p = 〈αbℓp, T (p)0p〉+ = 〈αbp0, T (p)〉+ = T (p)
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and using that fact that H is a horizontal connection,

〈µa, T (p)〉Hp = 〈µa, T (p)〉π1 = T (p),

so 〈〈αbℓ, T (p)0〉T (+), 〈µa, T (p)〉H〉 defines a map into T2(TM); thus λa,b is itself well defined.
These results also prove (i). We then have natural transformations αb : T 2 // T and λa,b :
T 2 //T 2 since they are defined as composites and pairings of other natural transformations.

For (ii), consider

λa,bT (p)

= 〈〈αbℓ, T (p)0〉T (+), 〈µa, T (p)〉H〉+T (p)

= 〈〈αbℓ, T (p)0〉T (+p), 〈µa, T (p)〉HT (p)〉+ (naturality of +)

= 〈〈αbℓ, T (p)0〉T (π1p), 〈µ
a, T (p)〉π0〉+ (properties of H and +)

= 〈T (p)0T (p), µa〉+

= 〈T (p)p0, µa〉+ (by naturality of 0)

= µa

For (iii), consider

λa,bK

= 〈〈αbℓ, T (p)0〉T (+), 〈µa, T (p)〉H〉+K

= 〈〈αbℓK, T (p)0K〉+, 〈µa, T (p)〉HK〉+ (by additivity of K)

= 〈〈αb, T (p)p0〉+, 〈µa, T (p)〉π1p0〉+ (by properties of K)

= αb (0 the unit of +)

as required.

Before proving that λa,b is a distributive law, it will be helpful to record a few other
results related to these maps.

Lemma 8.13. For each a, b ∈ Z,

(i) λa,bT T (K)K = αb
TK = 〈T (K)Kn, T (p)K · b〉+;

(ii) λa,bT T 2(p)K = αb
TT (p) = 〈T 2(p)Kn, T (pp) · b〉+;

(iii) λa,bT T (p)K = µa
TK = 〈T (K)K · a, T (p)K, pK〉+;

(iv) T (δb)λa,bT T (K)K = pp0;

(v) T (δb)λa,bT T 2(p)K = αb;

(vi) T (δb)λa,bT T (p)K = 〈K · (ab), K, p · b〉+.
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Proof. (i)

λa,bT T (K)K

= λa,bT KTK (by Corollary 6.21(i))

= αb
TK (by Prop. 8.12(iii))

= 〈KTn, T (p) · b〉+K

= 〈KTKn, T (p)K · b〉+ (additivity of K)

= 〈T (K)Kn, T (p)K · b〉+ (Corollary 6.21)

(ii)

λa,bT T 2(p)K

= λa,bT KTT (p) (naturality of K)

= αb
TT (p) (by Prop. 8.12(iii))

= 〈KTn, T (p) · b〉+T (p)

= 〈KTT (p)n, T (p)T (p) · b〉+ (naturality of + and n)

= 〈T 2(p)Kn, T (p)T (p) · b〉+ (by Lemma 6.18)

(iii)

λa,bT T (p)K

= µaK (by Prop. 8.12(iii))

= 〈KT · a, T (p), p〉+K

= 〈T (K)K · a, T (p)K, pK〉+ (additivity of K and Corollary 6.21(i))

(iv)

T (δb)λa,bT T (K)K

= T (δb)〈T (K)Kn, T (p)K · b〉+ (by (i))

= 〈T (δbK)Kn, T (δbp)K · b〉+

= 〈T (1 · b)Kn,K · b〉+ (by Proposition 8.7)

= 〈Kn · b,K · b〉+ (additivity of K)

= pp0 (cancellation of negative terms)

(v)

T (δb)λa,bT T 2(p)K

= T (δb)〈T 2(p)Kn, T (p)T (p) · b〉+ (by (ii))

= 〈T (δbT (p))Kn, T (δbp)T (p) · b〉+

= 〈Kn, T (p) · b〉+ (by Proposition 8.7)

= αb
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(vi)

T (δb)λa,bT T (p)K

= T (δb)µa
TK (by Prop. 8.12(ii))

= T (δb)〈KT · a, T (p), p〉+K

= T (δb)〈KTK · a, T (p)K, pK〉+ (by additivity of K)

= T (δb)〈T (K)K · a, T (p)K, pK〉+ (by Corollary 6.21(i))

= 〈T (1 · b)K · a, T (1)K, pδbK〉+ (by Proposition 8.7 and naturality)

= 〈K · (ab), K, p · b〉+ (by additivity of K and Proposition 8.7(iii))

We can now prove that the transformations λa,b are mixed distributive laws.

Proposition 8.14. For each a, b ∈ Z, λa,b is a mixed distributive law from the monad Ta to
the comonad Tb in Aff(C, T ).

Proof. As per definition 2.1 in [33], we need to establish four equations:

0Tλ
a,b = T (0),

λa,bpT = T (p),

T (δb)λa,bT T (λa,b) = λa,bδbT ,

T (λa,b)λa,bT T (µa) = µa
Tλ

a,b.

For the first equation, using additivity of K and naturality of 0,

0αb = 0〈Kn, T (p) · b〉+ = 〈p0n, p0 ·m〉+ = p0

and
0µa = 0〈K · a, T (p)p〉+ = 〈0 · a, p0, 1〉+ = 1,

so then

0λa,b

= 0〈〈αbℓ, T (p)0〉T (+), 〈µa, T (p)〉H〉+

= 〈p0ℓ, p00〉T (+), 〈1, p0〉H〉+

= 〈p0T (0), p0T (0)〉T (+), T (0)〉+ (additivity of H in the second component)

= 〈p0T (0), T (0)〉+

= 〈p00, T (0)〉+ (by naturality of 0)

= T (0)

as required.
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The second equation is Proposition 8.12(i).

The third equation asks for equality of two arrows with codomain T 3. Thus, as in the
proof of the coassociativity of δ, it suffices to check the equality of these maps when post-
composed by pK, pT (p), pp, T (p)K, T (p)T (p), T (K)K, and T 2(p)K. The first three of
these are covered by checking equality when followed by p:

T (δb)λa,bT T (λa,b)p

= T (δb)λa,bT pλa,b

= T (δb)T (p)λa,b (by Prop. 8.12(i))

= λa,b (by Prop. 8.7(i))

= λa,bδbT p (again by Prop. 8.7(i))

as required. For the equality when followed by T (p)K, consider

T (δb)λa,bT T (λa,b)T (p)K

= T (δb)λa,bT T (T (p))K (by Prop. 8.12(i))

= T (δb)λa,bT T 2(p)K

= αb (by Prop. 8.13(v))

while
λa,bδbTT (p)K = λa,bK = αb

by Propositions 8.7(ii) and 8.12(iii).
For equality when followed by T (p)T (p), consider

T (δb)λa,bT T (λa,b)T (p)T (p)

= T (δb)λa,bT T (T (p))T (p) (by Prop.8.12(i))

= T (δb)λa,bT T 2(p)T (p)

= T (δb)λa,bT T (p)T (p) (naturality of p)

= T (δb)µa
TT (p) (by Prop. 8.12(ii))

= T (δb)〈KT · a, T (p), p〉+T (p)

= T (δb)〈KTT (p) · a, T (p)T (p), pT (p)〉+ (by naturality of +)

= T (δb)〈T 2(p)K · a, T (pp), pT (p)〉+ (by Lemma 6.18(i))

= 〈T (δbT (p))K · a, T (δbpp), pδbT (p)〉+

= 〈K · a, T (p), p〉+ (by Proposition 8.7)

= µa

while
λa,bδbTT (p)T (p) = λa,bT (p) = µa

by Propositions 8.7(ii) and 8.12(ii).
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For the equality when followed by T (K)K, consider

T (δb)λa,bT T (λa,b)T (K)K

= T (δb)λa,bT T (αb)K (by Prop. 8.12(iii))

= T (δb)λa,bT 〈T (K)T (n), T 2(p), T 2(p), . . . , T 2(p)〉T (+)K (b copies of T 2(p))

= T (δb)λa,bT 〈T (K)Kn, T 2(p)K · b〉+ (additivity of K)

= 〈pp0, αb · b〉+ (by 8.13(iv and v))

= αb · b

while

λa,bδbTT (K)K

= λa,bδbTKTK (by Corollary 6.21(i))

= λa,b(1 · b)K (by Proposition 8.7(iii))

= λa,b(K · b) (since K additive)

= αb · b (by Prop. 8.12(iii))

Hence, for the third equation it now suffices to check equality when post-composed by
T 2(p)K. For this, consider

T (δb)λa,bT T (λa,b)T 2(p)K

= T (δb)λa,bT T (µa)K (by Prop. 8.12(ii))

= T (δb)λa,bT 〈T (K)K · a, T 2(p)K, T (p)K〉+ (definition of µa, additivity of K)

= 〈pp0 · a, αb, 〈K · (ab), K, p · b〉+〉+ (by Prop. 8.12)

= 〈Kn, T (p) · b,K · (ab), K, p · b〉+ (by definition of α)

= (〈K · a, T (p), p〉+) · b

= µa · b

while

λa,bδbTT
2(p)K

= λa,bδbTKTT (p) (by naturality of K)

= δb(1 · b)T (p) (by Proposition 8.7(iii))

= δb(T (p) · b) (by naturality of +)

= µa · b (by Prop. 8.12(iii))

as required.

For the fourth equation, we need to show

T (λa,b)λa,bT T (µa) = µa
Tλ

a,b.
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These are both maps into T 2, so it suffices to check their equality when post-composed by
K, T (p), and p.

We will start with the equality when followed by p. Consider

T (λa,b)λa,bT T (µa)p

= T (λa,b)λa,bT pµa

= T (λa,b)T (p)µa (by Prop. 8.12(i))

= T 2(p)µa (by Prop. 8.12(i))

= µa
TT (p) (naturality of µa)

= µa
Tλ

a,bp (by Prop. 8.12(i))

Next, we consider the equality when followed by T (p). Consider

T (λa,b)λa,bT T (µa)T (p)

= T (λa,b)λa,bT T (pp) (by Proposition 8.2)

= T (λa,b)λa,bT T (p)T (p)

= T (λa,b)µa
TT (p) (by Prop. 8.12(ii))

= T (λa,b)T 2(p)µa (naturality of µa)

= T (µa)µa (by Prop. 8.12(ii))

= µa
Tµ

a (since µa is associative)

= µa
Tλ

a,bT (p) (by Prop. 8.12(ii))

Finally, we need to check the equality when followed by K. For this, first consider
µa
Tλ

a,bK. By Proposition 8.12(iii), this equals µa
Tα

b, which equals

µa
T 〈Kn, T (p) · b〉+ = 〈µa

TKn, µ
a
TT (p) · b〉+ (⋆).

Now by additivity of K and Corollary 6.21(i),

µa
TK = 〈KT · a, T (p), p〉+K = 〈KTK · a, T (p)K, pK〉+ = 〈T (K)K · a, T (p)K, pK〉+

while by naturality of + and Lemma 6.18(i),

µTT (p) = 〈KT ·a, T (p), p〉+T (p) = 〈KTT (p)·a, T (pp), pT (P )〉+ = 〈T 2(p)K ·a, T (pp), pT (p)〉+

Thus ⋆ consists of the sum of −a copies of T (K)K, −1 of T (p)K, −1 of pK, ab copies of
T 2(p)K, b copies of T (pp), and b copies of pT (p).

We now need to compare this to T (λa,b)λa,bT T (µa)K. First, by additivity of K,

T (µa)K = T (〈K · a, T (p), p〉+)K = 〈T (K)K · a, T 2(p)K, T (p)K〉+

Then λa,bT T (µa)K is the sum of the components

λa,bT T (K)K · a = 〈T (K)Kn · a, T (p)K · (ab)〉+ (by Lemma 8.13(i));
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λa,bT T 2(p)K = 〈T 2(p)Kn, T (p)T (p) · b〉+ (by Lemma 8.13(ii));

λa,bT T (p)K = 〈T (K)K · a, T (p)K, pK〉+ (by Lemma 8.13(iii)).

However, note that in this sum, there are a copies of T (K)K and of its negative, T (K)Kn.
Thus, these terms cancel, giving ab+1 copies of T (p)K, −1 of T 2(p)K, b of T (p)T (p) = T (pp),
and one of pK (⋆⋆). We now need to pre-compose each of these terms with T (λa,b).

Using Proposition 8.12(i),

T (λa,b)T (p)K = T (λa,bp)K = T (T (p))K = T 2(p)K,

and using that same result and naturality of p,

T (λa,b)T (p)T (p) = T (T (p))T (p) = T (T (p)p) = T (pp).

Using Proposition 8.12(ii) and additivity of K,

T (λa,b)T 2(p)K = T (µa)K = 〈T (K)K · a, T 2(p)K, T (p)K〉+

Moreover, using naturality and Proposition 8.12(iii),

T (λa,b)pK = pλa,bK = pαb = 〈pKn, pT (p) · b〉+

Combining each of these with the numbers of the terms found in ⋆⋆, we now have a total
of ab + 1 copies of T 2(p)K, −a of T (K)K, −1 of T 2(p)K, −1 of T (p)K, b of T (pp), −1 of
pK, and b of pT (p). After summing the T 2(p)K terms, this gives us the same result as ⋆, as
required.

8.4 Bimonad and Hopf structure

In this final section, we generalize Jubin’s results on bimonad and Hopf monad structure in
the category of affine manifolds to the affine category of a tangent category, showing that in
particular each λa,b is not just a distributive law but in fact a bimonad; in some cases it is
also a Hopf monad.

However, before we get to this, it is worth mentioning another point of interest. Since
Theorem 8.11 has shown that c is a mixed distributive law of Ta over Tb, one may wonder
whether it also provides bimonad or Hopf monad structure. Unfortunately, in general this
is not the case. For c to be a bimonad from Ta to Tb it would need to satisfy the equation

T (δb)cT (µa) = µaδb.

One can check that in local coordinates of affine manifolds this equation is not satisfied.
More generally, in any tangent category, for these to be equal they would need to be equal
when post-composed by T (p); however, by Proposition 8.7(ii),

µaδbT (p) = µa
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while

T (δb)cT (µa)T (p)

= T (δb)cT (pp) (by Proposition 8.2)

= T (δb)pT (p) (tangent category axiom for c)

= pδbT (p) (naturality of p)

= p (by Proposition 8.7(ii))

Even for a = 0, in most tangent categories µa 6= p, and thus c will not give a bimonad
structure. However, the morphisms λa,b will, as Jubin found in the category of smooth
manifolds.

As in the previous section, all these results require that the tangent category have nega-
tives.

Theorem 8.15. For any tangent category (C, T ) that has negatives, for each a, b ∈ Z,

(Ta,T
b, λa,b)

is a bimonad on Aff(C, T ).

Proof. We have already taken care of many of the parts of the definition (Definition 4.4).
By Theorem 8.3, each Ta = (T, µa, 0) is a comonad, by Theorem 8.8, each Tb = (T, δb, p)
is a comonad, and by Proposition 8.14, λa,b provides a mixed distributive law between each
such monad and comonad pair. The fact that p and 0 are monad and comonad morphisms
also follows relatively easily: this requires precisely that

T (p)p = µap, 0δb = 00, and 0p = 1.

The first follows from naturality of p and Proposition 8.2, and the third is part of the
definition of a tangent category. For the second, we first calculate (using various tangent
category axioms) that

〈0, 0〉vb = 〈0, 0〉〈π0ℓ · b, π10〉T (+) = 〈0ℓ · b, 00〉T (+) = 〈0T (0) · b, 00〉T (+) = 00

so that since H is a horizontal connection we deduce that

0δb = 〈〈0, 0〉vb, 〈0, 0〉H〉+ = 〈00, 00〉+ = 00

as required.
The part of the proof that will take the most work is to show that

µaδb = T (δb)λa,bT T (µa).

Now, these are maps with codomain T 2M . Recall from Corollary 3.11 that T 2M is a fibre
product of three copies of TM , with projections K, T (p), p. Thus, to check the equality of
the above maps, it suffices to check their equality when post-composed by K, T (p), and p.
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We begin with p. By Proposition 8.7(i),

µaδbp = µa

while using naturality and Propositions 8.7(i) and 8.12(i),

T (δb)λa,bT T (µa)p = T (δb)λa,bT pµa = T (δ)T (p)µa = T (δp)µa = µa.

So the terms are equal when post-composed by p.
For equality with T (p), using Proposition 8.7(ii),

µaδbT (p) = µa.

On the other hand,

T (δb)λa,bT T (µa)T (p)

= T (δb)λa,bT T (pp) (by Proposition 8.2)

= T (δb)λa,bT T (p)T (p)

= T (δb)µa
TT (p) (by Prop. 8.12(ii))

= T (δb)〈KT · a, T (p), p〉+T (p)

= T (δb)〈KTT (p) · a, T (p)T (p), pT (p)〉+ (by naturality of +)

= T (δb)〈T 2(p)K · a, T (p)T (p), pT (p)〉+ (by Lemma 6.18(i))

= 〈T (δbT (p))K · a, T (δbp)T (p), pδbT (p)〉+

= 〈K · a, T (p), p〉+ (by Proposition 8.7)

= µa

Thus the terms are equal when post-composed by T (p).
The longest part of the proof is the equality when followed by K. First, consider µaδbK:

µaδbK

= µa(1 · b) (by Proposition 8.7)

= 〈K · a, T (p), p〉(1 · b)

= 〈K · (ab), T (p) · b, p · b〉+ (by associativity of addition)

That is, µaδbK consists of the sum of ab copies of K, b copies of T (p), and b copies of p.
We now consider T (δb)λa,bT T (µa)K; we need to show it also consists of the sum of ab

copies of K, b copies of T (p), and b copies of p. First, consider T (µa)K:

T (µa)K = 〈T (K), T (K), . . . T (K), T 2(p), T (p)〉T (+)K = 〈T (K)K · a, T 2(p)K, T (p)K〉+

by additivity of K. Thus, to consider

T (δb)λa,bT T (µa)K, (⋆)
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we will consider each of T (δb)λa,bT T (K)K (1), T (δb)λa,bT T 2(p)K (2), and T (δb)λa,bT T (p)K (3)
separately; ⋆ is then a sum of these terms.

To find T (δb)λa,bT T (K)K, we first calculate λa,bT T (K)K:

λa,bT T (K)K

= λa,bT KTK (by Corollary 6.21(i))

= αb
TK (by Prop. 8.12(iii))

= 〈KTn, T (p) · b〉+K

= 〈KTKn, T (p)K · b〉+ (additivity of K)

= 〈T (K)Kn, T (p)K · b〉+ (Corollary 6.21(i))

So then (1) becomes

T (δb)〈T (K)Kn, T (p)K · b〉+

= 〈T (δbK)Kn, T (δbp)K · b〉+

= 〈T (1 · b)Kn,K · b〉+ (by Proposition 8.7)

= 〈Kn · b,K · b〉+ (additivity of K)

That is, (1) sums b copies of negative K and b copies of K. Thus (1) is simply a zero term.
We now turn to (2); that is, we consider T (δb)λa,bT T 2(p)K:

T (δb)λa,bT T 2(p)K

= T (δb)T 2(p)λa,bK (by naturality of λa,b)

= T (δbT (p))αb (using Prop. 8.12(iii))

= αb (by Proposition 8.7(ii))

= 〈Kn, T (p) · b〉+

Thus, (2) contributes one negative copy of K and b copies of T (p) to ⋆.
We now consider (3):

T (δb)λa,bT T (p)K

= T (δb)µa
TK (by Prop. 8.12(ii))

= T (δb)〈KT · a, T (p), p〉+K

= T (δb)〈KTK · a, T (p)K, pK〉+ (additivity of K)

= T (δb)〈T (K)K · a, T (p)K, pK〉+ (by Corollary 6.21(i))

= 〈T (δbK)K · a, T (δbp)K, pδbK〉+ (using naturality of p)

= 〈T (1 · b)K · a,K, p(1 · b)〉+ (by Proposition 8.7)

= 〈K · (ba), K, p · b〉+ (by additivity of K)

Thus, (3) contributes ba = ab copies of K, one additional copy of K, and b copies of p.
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Thus, since ⋆ is the sum of (1), (2), and (3), in total, ⋆ contains ab + 1 − 1 = ab copies
of K, b copies of T (p), and b copies of p. This is the same as µaδbK, and thus we have the
desired equality of the terms when post-composed by K.

We have shown that µaδb and T (δb)λa,bT T (µa) are equal when post-composed by K, T (p),
and p, and thus, by Corollary 3.11, µaδb = T (δb)λa,bT T (µa), as required.

Finally, we consider Hopf monad structure (see [33, Definition 5.2]). For this, we need
an antipode: a natural transformation S : T // T with certain equational requirements. In
[26, Theorem 3.2.2], antipodes are provided for any a, b such that 1 + ab 6= 0. However, the
antipode is defined by scalar multiplying a tangent vector by − 1

1+ab
. In a general tangent

category (even with negatives) we do not have structure that corresponds to “division by
scalars”. However, if a = 0 or b = 0, the above is simply negation of the tangent vector. In
this case, we do indeed get Hopf monad structure in the general setting of a tangent category
with negatives.

Theorem 8.16. If (C, T ) has negatives, then for a, b ∈ Z, if either a = 0 or b = 0 then

(Ta,T
b, λa,b, n)

is a Hopf monad on Aff(C, T ).

Proof. By the previous result, all we need to show is that n is an antipode, i.e., that we have

δbnµa = δbT (n)µa = p0 : TM // TM

(see [33, Definition 5.2]). We first calculate δbT (n)µa:

δbT (n)µa

= δbT (n)〈K · a, T (p), p〉+

= δb〈Kn · a, T (p), pn〉+ (by additivity of K, naturality of p, and the equation np = p)

= 〈(1 · b)n · a, 1, n〉+ (by Proposition 8.7)

= 〈1, n〉+ (since a = 0 or b = 0)

= p0.

Similarly,

δbnµa

= δbn〈K · a, T (p), p〉+

= δb〈Kn · a, T (p)n, p〉+ (by additivity of K and the equation np = p)

= 〈(1 · b)n · a, n, 1〉+ (by Proposition 8.7)

= 〈n, 1〉+ (since a = 0 or b = 0)

= p0

as required.

58



References

[1] L. Auslander. The structure of complete locally affine manifolds. Topology 3, pp. 131-
139, (1964).

[2] L. Auslander, L. Markus. Holonomy of flat affinely connected manifolds. Annals of
Mathematics, 62, (1955).

[3] M. Barr, C. Wells. Toposes, Triples and Theories, Springer-Verlag, (1984).

[4] K. Bauer, B. Johson, C. Osborne, E. Riehl, and A. Tebbe, Directional deriva-
tives and higher order chain rules for abelian functor calculus, available at
http://arxiv.org/abs/1610.01930 (2017).

[5] F. Bergeron, G. Labelle, P. Leroux. Combinatorial Species and Tree-like Structures.
Cambridge University Press, (1997).

[6] R. Blackwell, G. M. Kelly, A. J. Power. Two-dimensional monad theory, Journal of Pure
and Applied Algebra 59, pp. 1–41, (1989).

[7] R. Blute, J.R.B. Cockett, R.A.G. Seely. Differential categories. Mathematical Structures
in Computer Science 16, pp. 1049-1083, (2006).

[8] R. Blute, J.R.B. Cockett, R.A.G. Seely. Cartesian differential categories. Theory and
Applications of Categories 22, pp. 622–672, (2009).

[9] R. Blute, T. Ehrhard, C. Tasson. A Convenient Differential Category, Cahiers de Topolo-
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