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Question and previous work
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Outline

The question we are interested in: how many categories are there
with n morphisms? (Up to isomorphism).

@ How far can we calculate this number exactly, either by hand
or with computer assistance? (And store the relevant
categories).

o Can we get a formula, either precise or asymptotic, for the
growth of this function?

@ Can we say anything about specific types of categories, eg,
Cauchy-complete categories?

Purely for interest’s sake, no application in mind!
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Known results

These were the previous known results:

Total 1 object 2 3] 4

1 arrow 1 1

2 3 2 1

3 11 7 3 1

4 55 35| 16 31 1

5 329 228 | 77| 20| 3

6 | 2858 2,237 | 485 | 111 | 21

7 31,559

8 1,668,997

9 3,685,886,630

10 ~ 1.05x10%®
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Finding categories as a CSP

@ One can formulate the problem of “finding all categories with
n morphisms” as a constraint satisfaction problem: a set of
variables and constraints they must satisfy.

@ For this, we use the “arrows only” version of category: objects
are represented by their identity arrows.

@ The category represented in this way is then simply an n x n
table of how the n arrows compose, with each value in the
table either another numbered arrow or a dummy value if the
pair is non-composable.

@ The constraints are the
domain/codomain /identity/associativity axioms for a category.
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Example category with five morphisms

The category:

with: 202 =0,302 =4, 402 =3, is represented as:

A W NN RO

* ¥ N % O|o
BW xR X
* ¥ O * NN
* ¥ B ¥ WlW
* ¥ W * DD
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Minion

@ There are many constraint satisfaction solvers available.
@ We used Minion: a relatively recent constrant satisfaction
solver that focuses on speed at the expense of some flexibility.

@ Like any constraint satisfaction solver, it has many
optimizations to solve CSP’s; both algorithmic and hardware
related.
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Trimming isomorphisms

@ One problem: the above process will give us many isomorphic
copies of the same category.

@ To resolve this problem, we run through the output we are
given, and only select the categories which are
lexicographically-least in each isomorphism class.

@ That is, for each category given to us by Minion, we run
through all permutations of the arrows in that category, and
re-arrange the original category's table according to that
permutation. If the original category is lexicographically
greater than the permuted version, we discard it.

@ This leaves only one category in each isomorphism class.
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Additional optimizations, part |

@ This process can find all categories with 7 morphisms in a
reasonable amount of time, but then starts to take days for 8
morphisms, so additional optimization is required.

e First optimization: count the number of categories with n
morphisms and k objects. Can remove all associativity
constraints for identity morphisms. This gives all categories
with 8 morphisms and most of 9.

@ Second optimization: count only the connected categories
with n morphisms and k objects. Non-connected categories
can be found as a function of the previous lower connected
counts. This gives counts up to 9 and 10 for all but the
2-object case.
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Additional optimizations, part Il

e Third optimization: count only the categories with 2 objects
that have at least a certain number of non-endomorphic
arrows (in practice, at least 3 or 4 non-endomorphic arrows).

@ This avoids counting, for example, categories with two
monoids with a single arrow between them: these can easily
be counted by hand, but add a lot of processing time when
running Minion.

@ We then seperately run Minion instances with specific directed
graphs with, say, 3 arrows between two monoids.



Updated table

Computer-assisted calculation
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1 2 3 4 5 6
1 1

2 2 1

3 7 3 1

4 35 16 3 1

5 228 77 20 3 1

6 2237 485 111 21 3 1
7 31559 4013 716 | 127 21| 3
8 1668997 47648 5623 | 862 | 131 | 21
9| 3.68 x 10 1868157 60201 | 6739 | 926 | 132
10 | ~1.05(10™) | ~ 3.69(10) | ~ 6(10)° | 65922 | 7349 | 945

This is as we far as we can go until someone counts the 11

monoids.



Monoids vs. Categories

Asymptotic counts
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Arrows Monoids All categories | Ratio
1 1 1 1.0
2 2 3 0.66
3 7 11 0.63
4 35 55 0.64
5 228 329 0.69
6 2,237 2,858 0.78
7 31,559 36,440 0.87
8 1,668,997 1,723,286 0.97
9| 3,685,886,630 | 3,687,822,810 | 0.999

10 | 1.05986 x 10 | 1.05982 x 10'* | 0.9999

Can we explain this?
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Almost all semigroups are 3-nilpotent

@ Almost all semigroups are 3-nilpotent: there is an element 0
with for any x, x0 = 0x = 0 and for any x,y,z, xyz=10
(Kleitman, Rothschild, Spencer 1976).

@ Why? These are very easy to construct: to construct such a
semigroup on a set A, pick a subset B, an element 0 € B, and
define xy to be 0 if x or y is in B and an arbitrary element of
B otherwise. Such an operation is automatically associative.

@ These types of semigroups overwhelm all other possibilities as
the order of the semigroups grow.
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Semigroup and monoid counts

@ One can get a precise count of the number of 3-nilpotent
semigroups of order n up to isomorphism (Distler and Mitchell
2012) and thus obtain an asymptotic formulae for the number
of semigroups of order n up to isomorphism.

@ Moreover, almost all monoids are semigroups with an identity
attached (Koubek and Rodl, 1985).

@ Thus one has asymptotic counts for both semigroups and
monoids of order n.



Asymptotic counts
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Conjecture: almost all categories are 3-nilpotent

semigroups

@ Thus, if we can prove that almost all categories with n
morphisms are monoids, then almost all categories will
actually be 3-nilpotent semigroups with an identity adjoined.

@ The direct known formula for the the number of 3-nilpotent
semigroups, and its astonishing growth rate, should allow us
to prove this.

@ We would thus have an asymptoptic count for the number of
categories with n morphisms (either up to isomorphism or up
to equivalence).
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Cauchy-complete

@ Most interest in finite categories comes from looking at their
associated presheaf categories.

@ Thus, it makes sense to also look at the counts of
Cauchy-complete categories.

@ This has the additional advantage of removing all monoids
which are not groups, and so avoids the ridiculous numbers
which come with the 3-nilpotent semigroups.



Cauchy-complete table

Asymptotic counts
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Total | 1 2 3 4 5|1 6| 718 10
1 11
2 2|1 1
3 411 2 1
4 11 | 2 6 2 1
5 25 |1 12 9 2 1
6 63 2| 23| 25| 10 2| 1
7 163 |1 45| 69| 35| 10| 2| 1
8 451 | 5| 98 | 178 |119| 38| 10| 2|1
9| 1311 | 2| 278 | 457 | 371 | 151 | 39 | 10 | 2
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Conclusions

@ We have counted and stored all categories with 10 morphisms
or less up to isomorphism: this is about the limit with current
technology using our techniques.

@ One can get an asymptotic count for the number of categories
with n morphisms, based on the idea that almost all
categories are monoids, and almost all monoids are
3-idempotent semigroups.

@ A more interesting question, then, is how many

Cauchy-complete categories there are: further investigation
needed.
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