Abstract differential algebra 000000

Differential categories and differential algebra

Geoff Cruttwell Mount Allison University

ASL 2013 North American Annual Meeting University of Waterloo, May 9th, 2013

Differential categories ●○○	Tangent categories	Differential algebra 0000	Abstract differential algebra
Introduction			

• Cartesian differential categories.

Differential categories ●○○	Tangent categories	Differential algebra 0000	Abstract differential algebra
Introduction			

- Cartesian differential categories.
- Its close relation, tangent categories.

Differential categories ●00	Tangent categories	Differential algebra	Abstract differential algebra
Introduction			

- Cartesian differential categories.
- Its close relation, tangent categories.
- See how differential rings arise from instances of tangent categories.

Differential categories ●00	Tangent categories	Differential algebra 0000	Abstract differential algebra
Introduction			

- Cartesian differential categories.
- Its close relation, tangent categories.
- See how differential rings arise from instances of tangent categories.
- Propose an alternative for a general "algebraic" framework to discuss tangent and differential structure.

Differential categories $\circ \bullet \circ$

Tangent categories

Differential algebra

Abstract differential algebra 000000

Differential categories

Definition (Blute/Cockett/Seely 2007)

A **Cartesian differential category** consists of a category with finite products and an addition on hom-sets which has, for each map $f : X \rightarrow Y$, a map $D[f] : X \times X \rightarrow Y$ satisfying seven axioms (chain rule, D preserves addition, symmetry of partial derivatives, etc.)

Differential categories $\circ \bullet \circ$

Tangent categories

Differential algebra

Abstract differential algebra 000000

Differential categories

Definition (Blute/Cockett/Seely 2007)

A **Cartesian differential category** consists of a category with finite products and an addition on hom-sets which has, for each map $f : X \to Y$, a map $D[f] : X \times X \to Y$ satisfying seven axioms (chain rule, D preserves addition, symmetry of partial derivatives, etc.)

- Think of *Df* as the Jacobian of *f*.
- As an example of the axioms, the chain rule is given by asking that $D(gf) = D(g)\langle D(f), f\pi_1 \rangle$.

Differential categories 00●	Tangent categories	Differential algebra 0000	Abstract differential algebra
Examples of Ca	ortesian differen	tial categories	

• Cartesian spaces: objects natural numbers, a map $f : n \to m$ is a smooth map $f : \mathbb{R}^n \to \mathbb{R}^m$.

Differential categories 00●	Tangent categories	Differential algebra 0000	Abstract differential algebra
Examples of Ca	rtesian differen	tial categories	

- Cartesian spaces: objects natural numbers, a map $f : n \to m$ is a smooth map $f : \mathbb{R}^n \to \mathbb{R}^m$.
- The coKleisli category of a monoidal differential category.

Differential categories 00●	Tangent categories	Differential algebra 0000	Abstract differential algebra
Examples of Ca	rtesian differen	tial categories	

- Cartesian spaces: objects natural numbers, a map $f : n \to m$ is a smooth map $f : \mathbb{R}^n \to \mathbb{R}^m$.
- The coKleisli category of a monoidal differential category.
- Cockett and Seely (2011): "cofree" Cartesian differential categories exist.

- Cartesian spaces: objects natural numbers, a map $f : n \to m$ is a smooth map $f : \mathbb{R}^n \to \mathbb{R}^m$.
- The coKleisli category of a monoidal differential category.
- Cockett and Seely (2011): "cofree" Cartesian differential categories exist.
- Cockett: Cartesian differential structure exists on polynomial functors.

- Cartesian spaces: objects natural numbers, a map $f : n \to m$ is a smooth map $f : \mathbb{R}^n \to \mathbb{R}^m$.
- The coKleisli category of a monoidal differential category.
- Cockett and Seely (2011): "cofree" Cartesian differential categories exist.
- Cockett: Cartesian differential structure exists on polynomial functors.
- Blute, Erhard and Tasson showed convenient vector spaces and smooth maps are a Cartesian differential category.

Differential categories	Tangent categories ●000000000	Differential algebra 0000	Abstract differential algebra
Tangent catego	orv definition		

Differential categories	Tangent categories ●000000000	Differential algebra 0000	Abstract differential algebra
Tangent cate	gory definition		

Definition (Rosicky 1984, modified Cockett/Cruttwell 2013)

A tangent category consists of a category ${\mathbb X}$ with:

• an endofunctor
$$\mathbb{X} \xrightarrow{T} \mathbb{X}$$
;

Differential categories	Tangent categories ●000000000	Differential algebra 0000	Abstract differential algebra
Tangent cate	gory definition		

Definition (Rosicky 1984, modified Cockett/Cruttwell 2013)

A tangent category consists of a category X with:

• an endofunctor
$$\mathbb{X} \xrightarrow{\mathcal{T}} \mathbb{X}$$
;

• a natural transformation $T \xrightarrow{p} I$;

Differential categories	Tangent categories ●000000000	Differential algebra 0000	Abstract differential algebra
Tangent cate	gory definition		

Definition (Rosicky 1984, modified Cockett/Cruttwell 2013)

A tangent category consists of a category X with:

- an endofunctor $\mathbb{X} \xrightarrow{T} \mathbb{X}$;
- a natural transformation $T \xrightarrow{p} I$;
- for each M, the pullback of n copies of $TM \xrightarrow{p_M} M$ along itself exists (and is preserved by T), call this pullback T_nM ;

Differential categories	Tangent categories ●000000000	Differential algebra 0000	Abstract differential algebra
Tangent catego	ory definition		

Definition (Rosicky 1984, modified Cockett/Cruttwell 2013)

A tangent category consists of a category ${\mathbb X}$ with:

- an endofunctor $\mathbb{X} \xrightarrow{T} \mathbb{X}$;
- a natural transformation $T \xrightarrow{p} I$;
- for each M, the pullback of n copies of $TM \xrightarrow{p_M} M$ along itself exists (and is preserved by T), call this pullback T_nM ;
- such that for each M ∈ X, TM → M has the structure of a commutative monoid in the slice category X/M, in particular there are natural transformation T₂ → T, I → T;

Differential categories	Tangent categories 0●00000000	Differential algebra 0000	Abstract differential algebra
Tangent cate	gorv definition	continued	

 (canonical flip) there is a natural transformation c : T² → T² which preserves additive bundle structure and satisfies c² = 1;

Differential categories	Tangent categories ○●○○○○○○○○	Differential algebra 0000	Abstract differential algebra
Tangent cate	orv definition	continued	

- (canonical flip) there is a natural transformation c : T² → T² which preserves additive bundle structure and satisfies c² = 1;
- (vertical lift) there is a natural transformation ℓ : T → T² which preserves additive bundle structure and satisfies cℓ = ℓ;

Differential categories	Tangent categories 0●00000000	Differential algebra 0000	Abstract differential algebra
Tangent cate	gory definition	continued	

- (canonical flip) there is a natural transformation c : T² → T² which preserves additive bundle structure and satisfies c² = 1;
- (vertical lift) there is a natural transformation $\ell : T \to T^2$ which preserves additive bundle structure and satisfies $c\ell = \ell$;
- various other coherence equations for ℓ and c;

Differential categories	Tangent categories 0●00000000	Differential algebra 0000	Abstract differential algebra
Tangent cate	orv definition	continued	

- (canonical flip) there is a natural transformation $c : T^2 \rightarrow T^2$ which preserves additive bundle structure and satisfies $c^2 = 1$;
- (vertical lift) there is a natural transformation $\ell : T \to T^2$ which preserves additive bundle structure and satisfies $c\ell = \ell$;
- various other coherence equations for ℓ and c;
- (universality of vertical lift) the map

$$T_2M \xrightarrow{v := T(+)\langle \ell \pi_1, 0_T \pi_2 \rangle} T^2M$$

is the equalizer of

$$T^2M \xrightarrow[0pT(p)]{T(p)} TM.$$

Differential categories	Tangent categories 00●0000000	Differential algebra 0000	Abstract differential algebra
Analysis examp	oles		

• The canonical example: the tangent bundle functor on the category of finite-dimensional smooth manifolds.

Differential categories	Tangent categories 00●0000000	Differential algebra 0000	Abstract differential algebra
Analysis exam	nples		

- The canonical example: the tangent bundle functor on the category of finite-dimensional smooth manifolds.
- \bullet Any Cartesian differential category $\mathbb X$ has associated tangent structure:

$$TM := M \times M, Tf := \langle Df, f\pi_1 \rangle$$

with:

•
$$p := \pi_1$$
;
• $T_n(M) := M \times M \ldots \times M (n+1 \text{ times})$;
• $+(\langle x_1, x_2, x_3 \rangle) := \langle x_1 + x_2, x_3 \rangle, 0(x_1) := \langle 0, x_1 \rangle$
• $\ell(\langle x_1, x_2 \rangle) := \langle \langle x_1, 0 \rangle, \langle 0, x_2 \rangle \rangle$;
• $c(\langle \langle x_1, x_2 \rangle, \langle x_3, x_4 \rangle \rangle) := \langle \langle x_1, x_3 \rangle, \langle x_2, x_4 \rangle \rangle$.
• $v(\langle x_1, x_2, x_3 \rangle) = \langle \langle x_1, 0 \rangle, \langle x_2, x_3 \rangle \rangle$;

Differential categories	Tangent categories 000●000000	Differential algebra 0000	Abstract differential algebra
Manifold and a	algebraic exam	ples	

 If the Cartesian differential category has a compatible notion of open subset, the category of manifolds (Grandis) is a tangent category, with tangent functor locally as above.

000	000000000	0000	000000		
Manifold and algobraic examples					

Manifold and algebraic examples

- If the Cartesian differential category has a compatible notion of open subset, the category of manifolds (Grandis) is a tangent category, with tangent functor locally as above.
- This is one way to show that the category of finite-dimensional smooth manifolds is a tangent category.

Manifold and			
000	000000000	0000	000000
Differential categories	Tangent categories	Differential algebra	Abstract differential algebra

Manifold and algebraic examples

- If the Cartesian differential category has a compatible notion of open subset, the category of manifolds (Grandis) is a tangent category, with tangent functor locally as above.
- This is one way to show that the category of finite-dimensional smooth manifolds is a tangent category.
- Similarly, convenient vector spaces have tangent structure, as do manifolds built on convenient vector spaces.

Differential categories	Tangent categories 000●000000	Differential algebra 0000	Abstract differential algebra
Manifold and a	algebraic exam	ples	

- If the Cartesian differential category has a compatible notion of open subset, the category of manifolds (Grandis) is a tangent category, with tangent functor locally as above.
- This is one way to show that the category of finite-dimensional smooth manifolds is a tangent category.
- Similarly, convenient vector spaces have tangent structure, as do manifolds built on convenient vector spaces.
- The category **cRing** of commutative rings is a tangent category with:

$$TA := A[\epsilon] = \{a + b\epsilon : a, b \in A, \epsilon^2 = 0\},\$$

and natural transformations as for Cartesian differential categories.

Differential categories	Tangent categories 000●000000	Differential algebra 0000	Abstract differential algebra
Manifold and a	lgebraic examp	les	

- If the Cartesian differential category has a compatible notion of open subset, the category of manifolds (Grandis) is a tangent category, with tangent functor locally as above.
 - This is one way to show that the category of finite-dimensional smooth manifolds is a tangent category.
 - Similarly, convenient vector spaces have tangent structure, as do manifolds built on convenient vector spaces.
 - The category **cRing** of commutative rings is a tangent category with:

$$TA := A[\epsilon] = \{a + b\epsilon : a, b \in A, \epsilon^2 = 0\},$$

and natural transformations as for Cartesian differential categories.

• **cRing**^{op} is a tangent category as, with

$$TA := A^{\mathbb{Z}[\epsilon]} = S(\Omega_A)$$

(symmetric ring of the Kahler differentials of A).

Differential categories	Tangent categories 0000●00000	Differential algebra 0000	Abstract differential algebra
SDG examples			

Recall that a model of SDG consists of a topos with an internal commutative ring R that satisfies the Kock-Lawvere axiom: if we define

$$D := \{ d \in R : d^2 = 0 \},\$$

then the canonical map

$$\phi: R \times R \to R^D,$$

given by $\phi(a, b)(d) := a + b \cdot d$, is invertible.

Differential categories	Tangent categories 0000●00000	Differential algebra 0000	Abstract differential algebra
SDG examples			

Recall that a model of SDG consists of a topos with an internal commutative ring R that satisfies the Kock-Lawvere axiom: if we define

$$D:=\{d\in R: d^2=0\},\,$$

then the canonical map

$$\phi: R \times R \to R^D,$$

given by $\phi(a, b)(d) := a + b \cdot d$, is invertible.

• The full subcategory of microlinear objects in a model of SDG is a tangent category, with

$$TM := M^D$$
.

• Any tangent category with a representable tangent functor produces a model of SDG (uses the universality of vertical lift).

Differential categories

Tangent categories

Differential algebra

Abstract differential algebra 000000

Cartesian Tangent to Cartesian Differential

Every Cartesian tangent category has an associated Cartesian differential category:

Definition

For an object A in a Cartesian tangent category, **differential structure on** A consists of a commutative monoid structure $+: A \times A \rightarrow A, 0: 1 \rightarrow A$ on A together with a map $\hat{p}: TA \rightarrow A$ such that

$$A \stackrel{\hat{p}}{\longleftarrow} TA \stackrel{p}{\longrightarrow} A$$

is a product diagram and \hat{p} is compatible with + and 0.

Differential categories

Tangent categories

Differential algebra

Abstract differential algebra 000000

Cartesian Tangent to Cartesian Differential

Every Cartesian tangent category has an associated Cartesian differential category:

Definition

For an object A in a Cartesian tangent category, **differential structure on** A consists of a commutative monoid structure $+: A \times A \rightarrow A, 0: 1 \rightarrow A$ on A together with a map $\hat{p}: TA \rightarrow A$ such that

$$A \stackrel{\hat{p}}{\longleftarrow} TA \stackrel{p}{\longrightarrow} A$$

is a product diagram and \hat{p} is compatible with + and 0.

Theorem (Cockett/Cruttwell)

The differential objects in a Cartesian tangent category form a Cartesian differential category, where, for $f : A \rightarrow B$, we define

$$D(f) := A \times A \cong TA \xrightarrow{T(f)} TB \xrightarrow{\hat{p}} B_{f}$$

Tangent spaces			000000
Differential categories	Tangent categories	Differential algebra	Abstract differential algebra

For a point $1 \xrightarrow{a} M$ of an object of a tangent category, say that **the tangent space at** *a* **exists** if the pullback of *a* along p_M exists:

$$T_{a}(M) \xrightarrow{i} TM \downarrow^{p_{M}} 1 \xrightarrow{i} M$$

and this pullback is preserved by T.

Tangent spaces	and differential	labiacta	
Differential categories	Tangent categories	Differential algebra	Abstract differential algebra

For a point $1 \xrightarrow{a} M$ of an object of a tangent category, say that **the tangent space at** *a* **exists** if the pullback of *a* along p_M exists:

$$T_{a}(M) \xrightarrow{i} TM \downarrow^{p_{M}} 1 \xrightarrow{i} M$$

and this pullback is preserved by T.

Theorem (Cockett/Cruttwell)

Tangent spaces correspond to differential objects.

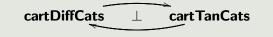
(The proof uses the universality of vertical lift.)

Differential categories	Tangent categories 00000000000	Differential algebra	Abstract differential algebra
Differential and	tangent categ	ories	

Differential categories	Tangent categories 0000000000	Differential algebra 0000	Abstract differential algebra
Differential and	tangent categ	gories	

Theorem (Cockett/Cruttwell)

There is an adjunction between small Cartesian differential categories and small Cartesian tangent categories (with appropriate morphisms):



This provides additional examples of Cartesian differential categories.

Differential categories 0000 Differential algebra 0000 Abstract differential algebra 0000 Two general constructions of tangent categories

Theorem (Cockett/Cruttwell)

If (X, T) is a tangent category in which T has a left adjoint L, then (X^{op}, L) is also a tangent category.

Differential categories

Tangent categories

Differential algebra

Abstract differential algebra 000000

Two general constructions of tangent categories

Theorem (Cockett/Cruttwell)

If (X, T) is a tangent category in which T has a left adjoint L, then (X^{op}, L) is also a tangent category.

Theorem (Rosicky)

If (X, T) is a tangent category, then the category of functors from X to **set** which preserve the equalizers and pullbacks of tangent structure is a tangent category, with tangent functor $T_*(F) := FT$.

Differential categories Tangent categories Diffe

Differential algebra

Abstract differential algebra

Theory: vector fields in a tangent category

Definition

If (X, T) is a tangent category with an object $X \in X$, a **vector** field on X is a map $X \xrightarrow{v} TX$ with pv = 1.

Differential categories	Tangent categories	Differential algebra	Abstract differential alg
	000000000●	0000	000000
Theory: vector	fields in a tang	gent category	

ebra

Definition

If (\mathbb{X}, T) is a tangent category with an object $X \in \mathbb{X}$, a vector field on X is a map $X \xrightarrow{v} TX$ with pv = 1.

- Rosicky showed how to use the universal property of vertical lift to define the Lie bracket of two vector fields in a tangent category with negatives.
- Cockett/Cruttwell showed in any tangent category, T and T² are monads; with the Kleisli category of T containing vector fields and their addition.

Differential	categories

Tangent categories

Differential algebra ●000 Abstract differential algebra 000000

Differential rings

Definition

A differential ring consists of a ring R with a map $\partial : R \to R$ such that for $r, s \in R$,

$$\partial(0) = 0, \partial(r+s) = \partial(r) + \partial(s), \text{ and } \partial(rs) = \partial(r)s + r\partial(s).$$

Differential algebra •000 Abstract differential algebra 000000

Differential rings

Definition

A differential ring consists of a ring R with a map $\partial : R \to R$ such that for $r, s \in R$,

$$\partial(0) = 0, \partial(r+s) = \partial(r) + \partial(s), \text{ and } \partial(rs) = \partial(r)s + r\partial(s).$$

For example, if M is a smooth manifold and v a vector field on M, the set of smooth functions $C^{\infty}(M, \mathbb{R})$ can be given the structure of a differential ring.

Differential categories	Tangent categories	Differential algebra 0●00	Abstract differential algebra
Ring objects in	tangent catego	ories	

Definition

Let (X, T) be a tangent category. A **tangent ring object** is a ring object $R \in X$ such that:

- *R* has a map p̂ : *TR* → *R* making it into a differential object with respect to its addition;
- the map p̂: TR → R is also compatible with the multiplication of R.

Differential categories	Tangent categories	Differential algebra 0●00	Abstract differential algebra
Ring objects in	tangent catego	ories	

Definition

Let (X, T) be a tangent category. A **tangent ring object** is a ring object $R \in X$ such that:

- *R* has a map p̂ : *TR* → *R* making it into a differential object with respect to its addition;
- the map p̂: TR → R is also compatible with the multiplication of R.

For example, if \mathbb{X} is the coKleisli category of a monoidal differential category, then the monoidal unit I will be a tangent ring object for the associated tangent category. (For example, \mathbb{R} in the standard example or in convenient vector spaces).

Proposition

Suppose (X, T) is a tangent category, R a tangent ring object, and v a vector field on $X \in X$. Then the hom-set X(X, R) can be given the structure of a differential ring, with differential $\partial_v : X(X, R) \to X(X, R)$ defined by mapping $f : X \to R$ to

$$X \xrightarrow{\nu} TX \xrightarrow{Tf} TR \xrightarrow{\hat{p}} R$$

This includes potentially new interesting examples of differential rings; for example, any vector field on a convenient manifold gives a differential ring.

Differential categories	Tangent categories	Differential algebra 000●	Abstract differential algebra
The problem			

• By above, we have that every vector field on X gives a differential on $\mathbb{X}(X, R)$. (With appropriate definitions of map, this is functorial).

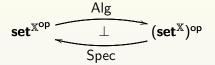
Differential categories	Tangent categories	Differential algebra 000●	Abstract differential algebra
The problem			

- By above, we have that every vector field on X gives a differential on $\mathbb{X}(X, R)$. (With appropriate definitions of map, this is functorial).
- Using Hadamard's lemma, for a smooth manifold M, differentials on $\mathbf{C}^{\infty}(M, \mathbb{R})$ bijectively correspond to vector fields on M.

Differential categories	Tangent categories	Differential algebra 000●	Abstract differential algebra 000000
The problem			

- By above, we have that every vector field on X gives a differential on $\mathbb{X}(X, R)$. (With appropriate definitions of map, this is functorial).
- Using Hadamard's lemma, for a smooth manifold M, differentials on $\mathbf{C}^{\infty}(M, \mathbb{R})$ bijectively correspond to vector fields on M.
- But, for a general Cartesian differential category or tangent category X there is not necessarily a correspondence between differentials on X(X, R) and vector fields on X.

For any category \mathbb{X} , there is a fundamental adjoint pair:



where

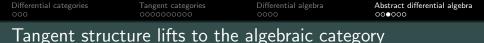
$$\mathsf{Alg}(F)(X) = \mathbf{set}^{\mathbb{X}^{\mathsf{op}}}(F, \gamma(X)) \text{ and } \mathsf{Spec}(G)(X) = \mathbf{set}^{\mathbb{X}}(G, \gamma'(X)).$$

From Lawvere's paper *Taking categories seriously* (1986), "The conjugacies [above] are the first step toward expressing the duality between space and quantity fundamental to mathematics".

Abstract differential algebra 00000

The analysis/algebra pair for the canonical example

- For the standard Cartesian differential category, these categories are fundamentally important:
- the category on the left includes smooth manifolds and diffeological spaces;
- when restricted to those functors which preserve finite products, the category on the right is the category of C^{∞} algebras.



Moreover, tangent structure from $\mathbb X$ lifts to tangent structure on $(\textbf{set}^{\mathbb X})^{op}$:

If X is a Cartesian differential category, then by the earlier result, the subcategory of set^X whose elements preserve products has tangent structure T_{*}, where T_{*}(F) = FT.

T	11.6		
Differential categories	Tangent categories	Differential algebra 0000	Abstract differential algebra

- If X is a Cartesian differential category, then by the earlier result, the subcategory of set^X whose elements preserve products has tangent structure *T*_{*}, where *T*_{*}(*F*) = *FT*.
- But since **set** is cocomplete, this has a left adjoint (left Kan extension) which restricts to the full subcategory of product-preserving functors; call it *T*₁.

Differential categories	Tangent categories	Differential algebra 0000	Abstract differential algebra
—	1.0.	1 1 1	

- If X is a Cartesian differential category, then by the earlier result, the subcategory of set^X whose elements preserve products has tangent structure T_{*}, where T_{*}(F) = FT.
- But since **set** is cocomplete, this has a left adjoint (left Kan extension) which restricts to the full subcategory of product-preserving functors; call it *T*₁.
- Again by an earlier result about tangent structure, T_! is a tangent functor on the category (set^X)^{op}.

Differential ca	erential categories Tangent catego				ries Differential algebra			Abstract differential alge 00●000	ebra	
				1	1					

- If X is a Cartesian differential category, then by the earlier result, the subcategory of set^X whose elements preserve products has tangent structure T_{*}, where T_{*}(F) = FT.
- But since **set** is cocomplete, this has a left adjoint (left Kan extension) which restricts to the full subcategory of product-preserving functors; call it *T*₁.
- Again by an earlier result about tangent structure, T₁ is a tangent functor on the category (set^X)^{op}.
- These tangent functors have been implicitly used in the literature on C^{∞} algebras, but not explicitly identified as tangent structure.

Differential ca	erential categories Tangent catego				ries Differential algebra			Abstract differential alge 00●000	ebra	
				1	1					

- If X is a Cartesian differential category, then by the earlier result, the subcategory of set^X whose elements preserve products has tangent structure T_{*}, where T_{*}(F) = FT.
- But since **set** is cocomplete, this has a left adjoint (left Kan extension) which restricts to the full subcategory of product-preserving functors; call it *T*₁.
- Again by an earlier result about tangent structure, T₁ is a tangent functor on the category (set^X)^{op}.
- These tangent functors have been implicitly used in the literature on C^{∞} algebras, but not explicitly identified as tangent structure.
- Moreover, this works for **any** Cartesian differential category X (or tangent category, if we restrict to functors which preserve the limits of tangent structure).

Differential categories

Tangent categories

Differential algebra

Abstract differential algebra

Vector fields on $T_!(C^{\infty}(M))$

For $A \in (\mathbf{set}^{\mathbb{X}})^{\mathsf{op}}$, we have the following equivalences:

$$A \to T_! A \in (\mathbf{set}^{\mathbb{X}})^{\mathsf{op}}$$

 $\Leftrightarrow \quad T_! A \to A \in \mathbf{set}^{\mathbb{X}}$
 $\Leftrightarrow \quad A \to T_* A \in \mathbf{set}^{\mathbb{X}}$

Differential categories

Tangent categories

Differential algebra

Abstract differential algebra

Vector fields on $T_!(C^{\infty}(M))$

For $A \in (\mathbf{set}^{\mathbb{X}})^{\mathsf{op}}$, we have the following equivalences:

In the particular case of $A = C^{\infty}(M)$ for some smooth manifold M, in particular we get a map

$$C^{\infty}(M,\mathbb{R}) \to C^{\infty}(M,T\mathbb{R})$$

 $\Leftrightarrow C^{\infty}(M,\mathbb{R}) \to C^{\infty}(M,\mathbb{R}) \times C^{\infty}(M,\mathbb{R})$

which, being a vector field, in particular simply consists of a map

$$C^{\infty}(M,\mathbb{R}) \to C^{\infty}(M,\mathbb{R})$$

Differential categories Tangent categories Differential algebra

Abstract differential algebra 000000

Vector fields on $T_!(C^{\infty}(M))$

For $A \in (\mathbf{set}^{\mathbb{X}})^{\mathsf{op}}$, we have the following equivalences:

$$\begin{array}{l} A \to T_! A \in (\mathbf{set}^{\mathbb{X}})^{\mathsf{o}_!} \\ \Leftrightarrow \quad T_! A \to A \in \mathbf{set}^{\mathbb{X}} \\ \Leftrightarrow \quad A \to T_* A \in \mathbf{set}^{\mathbb{X}} \end{array}$$

In the particular case of $A = C^{\infty}(M)$ for some smooth manifold M, in particular we get a map

$$egin{aligned} & C^\infty(M,\mathbb{R}) o C^\infty(M,T\mathbb{R}) \ & \Leftrightarrow C^\infty(M,\mathbb{R}) o C^\infty(M,\mathbb{R}) imes C^\infty(M,\mathbb{R}) \end{aligned}$$

which, being a vector field, in particular simply consists of a map

$$C^{\infty}(M,\mathbb{R}) \to C^{\infty}(M,\mathbb{R})$$

Furthermore, the naturality of this map with respect to $+, \cdot : \mathbb{R} \times \mathbb{R}$ $\rightarrow \mathbb{R}$ makes this operation into a derivation on $C^{\infty}(M, \mathbb{R})$.

- This means that for a general "space" X ∈ set^{X^{op}}, T₁(Alg(X)) is a good "algebraic" version of the tangent bundle of X.
- The replacement for differential rings is vector fields on $T_{!}(Alg(X))$.

- This means that for a general "space" X ∈ set^{X^{op}}, *T*₁(*Alg*(X)) is a good "algebraic" version of the tangent bundle of X.
- The replacement for differential rings is vector fields on $T_1(Alg(X))$.
- We then have three possibilities for a "tangent bundle" functor on objects X ∈ set^{X^{op}}:

 $T_1(X)$, Spec($T_1(Alg(X))$, $T_1(Spec(Alg(X))$.

- For the canonical Cartesian differential category X and X a smooth manifold, these are all the same; but they are distinct for more general X (say, convenient manifolds).
- The functor T_! (on set^{X^{op}}) is a standard definition of the tangent bundle for a diffeological space.

Differential categories	Tangent categories	Differential algebra 0000	Abstract differential algebra 00000●
Future work			

- Determine relationships between the various tangent functors above.
- Are they tangent structure on the category of spaces **set**^{Xop}?
- Under what circumstances does the adjunction between "smooth spaces" and "smooth algebras" restrict to an equivalence?

Differential categories	Tangent categories	Differential algebra 0000	Abstract differential algebra 00000●
Future work			

- Determine relationships between the various tangent functors above.
- Are they tangent structure on the category of spaces **set**^{Xop}?
- Under what circumstances does the adjunction between "smooth spaces" and "smooth algebras" restrict to an equivalence?

References:

- Blute, R., Cockett, R. and Seely, R. Cartesian differential categories. *Theory and Applications of Categories*, **22**, pg. 622–672, 2008.
- Cockett, R. and Cruttwell, G. Differential structure, tangent structure, and SDG. To appear in *Applied Categorical Structures*, preprint available at

http://www.mta.ca/~gcruttwell/publications/sman3.pdf

 Rosický, J. Abstract tangent functors. *Diagrammes*, 12, Exp. No. 3, 1984.