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Motivation

One of my main research interests for the past few years has been
categorical structures for differentiation.

Some of these categorical structures (like cartesian differential
categories and tangent categories) can be understood in terms of
certain fibrations.

We’ve extended Cartesian differential categories and tangent
categories to categories of partial maps by adding restriction
structure to the definitions.

We’d like to understand how the fibrational point of view works in
these partial settings.
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Motivation continued...

But as we’ll see, some of the structures we’d like to work with in
restriction categories look like fibrations but are not.

Thus (as is usual with restriction categories) we need to
modify/generalize the definition of fibration slightly when working
with restriction categories.

We call this modification/generalization latent fibrations, and these
are the main subject of the talk(s).

One of the other main themes will be the construction of the dual
fibration of a given fibration, when this construction can be
performed for latent fibrations, and how this construction relates to
reverse cartesian differential categories (and, potentially, cotangent
categories).



Introduction Fibrations The dual fibration Towards partiality

Overview

I’ll cover the topics in the following order:

1 Review of fibrations, some particular examples we’ll be focusing on,
and how these relate to derivatives.

2 The construction of the dual fibration (which is not as well-known as
it should be!) and how it relates to derivatives.

3 Review of restriction categories.

4 Latent fibrations.

5 Types of latent fibrations, including latent hyperfibrations.

6 The dual of a latent hyperfibration.
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Fibration definition

Definition

For a functor p : E −→ B, a Cartesian arrow is a map f : X −→ Y in E
so that for any g : Z −→ Y in E and h : p(Z ) −→ p(X ) in B so that
hp(f ) = p(g)a, there is a unique h′ : Z −→ X so that p(h′) = h and
h′f = g :
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f
// Y
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p(Z )
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p(g)
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p(X )
p(f )
// p(Y )

a(Writing composition in diagrammatic order)

Definition

A functor p : E −→ B is said to be a fibration if for any α : A −→ B in B,
and any Y such that p(Y ) = B, there is a Cartesian arrow α∗ : X −→ Y
over α, i.e., such that p(α∗) = α.
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The simple fibration

Definition

For any category C with binary products, the simple fibration over C,
C[C], is the category with:

an object is a pair of objects (A,A′) from C;

an arrow from (A,A′) to (B,B ′) is a pair of arrows (f , f ′) with

A
f−−→ B and A× A′

f ′−−→ B ′

the composite of (f , f ′) : (A,A′) −→ (B,B ′) with (g , g ′) : (B,B ′)
−→ (C ,C ′) is fg : A −→ B with

A× A′
〈π0f , f

′〉−−−−−−→ B × B ′
g ′−−→ C ′
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The simple fibration continued

The projection C[C] −→ C is a fibration: given f : A −→ B in C and
(B,B ′) over B, define

f ∗ : (A,B ′) −→ (B,B ′) by f ∗ = (f , π1)

This is Cartesian:

(C ,C ′)

(h,g ′)

��

(g ,g ′)

$$J
JJ

JJ
JJ

JJ

(A,B ′)
(f ,π1)

// (B,B ′)

7→

C

h
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g

��@
@@
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@

A
f
// B
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The simple fibration and derivatives

Suppose C is the category of smooth maps between Rn’s.

Then for any f : A −→ B in this category, there is a map

D[f ] : A× A −→ B

sending (a, a′) to the Jacobian of f at a times the vector a′.

The chain rule shows that the operation C −→ C[C] which sends

A 7→ (A,A) and f 7→ (f ,D[f ])

is a functor (and is a section of the projection C[C] −→ C).

More generally, any Cartesian differential category C gives a section of its
simple fibration.
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The codomain fibration

For any category C with pullbacks, the codomain fibration over C has
total category the arrow category of C, arr(C), so has:

Objects arrows a : A′ −→ A;

Maps commutative squares

A′
f ′ //

a

��

B ′

b
��

A
f // B

If we have f : A −→ B and b : B ′ −→ B

B ′

b
��

A
f // B

you can get a Cartesian arrow over f by taking the pullback.
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The tangent bundle and the codomain fibration

Suppose C is the category of smooth manifolds.

C does not have all pullbacks, but we can restrict to the full
subcategory arrs(C) ⊂ arr(C) of submersions (which do have
pullbacks along any map into their codomain)

The tangent bundle then yields a functor C −→ arrs(C) which sends
a map f : A −→ B to

TA

pA

��

T (f ) // TB

pB

��
A

f // B

where pA is the canonical projection map from the tangent bundle of
A to A.

This point of view helps shed light on the importance of local
diffeomorphisms/etale maps: they are precisely the maps f : A −→ B
which get sent by the above functor to a Cartesian arrow.

More generally, any tangent category C with a display system has similar
structure.
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The indexed category of a fibration

Recall that if p : E −→ B is a cloven fibration (that is, we have chosen
Cartesian liftings), then we can build a pseudofunctor

p−1 : Bop −→ CAT

as follows:

Say an arrow f : X −→ Y in E is vertical if p(f ) is an identity.

For A ∈ B, define a category p−1(A) (the “fibre over A”’) whose
objects are the objects in E over A and whose arrows are the vertical
arrows over 1A.

Each α : A −→ B in B gives a functor

α∗ : p−1(B) −→ p−1(A).

This is the indexed category associated to the (cloven) fibration.
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Indexed category vs. fibrations

Conversely, given any pseudofunctor

F : Bop −→ CAT

one can build a category El(F ), the category of elements (or
Grothendieck construction) which is a cloven fibration over B.

This gives an equivalence

(Cloven fibrations over B) ∼= (pseudofunctors Bop −→ CAT)

Both sides of this equivalence give important perspectives!
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The dual indexed category

Given this perspective on fibrations, there is an obvious construction one
can perform on an indexed category: take the opposite of each fibre, ie.,
post-compose the indexed category F with the (covariant!) functor
()op : CAT −→ CAT:

Bop F−−→ CAT
()op−−−→ CAT

The associated fibration is called the dual fibration.

Note: its total category is not the opposite of the total category of the
original fibration!
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The dual fibration

It will be helpful to have a direct description of the dual fibration directly
in terms of the original fibration. This idea is originally due to (Bénabou,
1975). Let p : E −→ B be a fibration.

One can show that any arrow f : X −→ Y in E uniquely factors as a
vertical v followed by a cartesian c :

S

c

��?
??

??
??

X

v

??�������
Y

So to dualize we just reverse the direction of the vertical arrow!

Define E∗ to have the same objects as E, but an arrow X −→ Y is
(an equivalence class of) a pair (v , c):

S

c

��?
??

??
??

v

����
��
��
�

X Y
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The dual fibration continued

How does composition work?

One can prove that the pullback of a vertical and cartesian with the
same codomain always exists.

Thus,we can define composition by pullback:

P

w

����
��
��
�� d

  @
@@

@@
@@

@

S

v

����
��
��
�

c

��?
??

??
??

T

v ′

~~~~
~~
~~
~~ c′

��@
@@

@@
@@

@

X Y Z

One can show that the resulting functor E∗ −→ B is again a
fibration, and the fibres of E∗ are the opposites of the fibres of E.
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The dual of the simple fibration

Definition

For any category C with binary products, the dual of the simple fibration
over C, C[C]∗, is the category with:

an object is a pair of objects (A,A′) from C;

an arrow from (A,A′) to (B,B ′) is a pair of arrows (f , f ∗) with

A
f−−→ B and A× B ′

f ∗−−→ A′

(Note the type of f ∗!)

composite of (A,A′)
(f , f ∗)−−−−−→ (B,B ′) with (B,B ′)

(g , g∗)−−−−−→ (C ,C ′) is

A× C ′
〈π0, (f × 1)g∗〉−−−−−−−−−−→ A× B ′

f ∗−−→ A′.
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Dual simple fibration as lenses

The dual of the simple fibration is sometimes also referred to as the
category of lenses.

Lenses as described in database theory form a subcategory of the
dual of the simple fibration which is restricted to pairs (A,A).

In this case, the f : A −→ A is referred to as the get of the lens and
the f ∗ : A× B −→ A as the put of the lens.

The pair (f , f ∗) are often required to satisfy certain additional
equations.

But the more general arrows in the dual of the simple fibration are
also useful in their own right in functional programming and have
also been referred to as lenses.

These maps can also be seen as “generalized learners”: f is some
action you perform, and f ∗ is how you update your assumptions.
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Reverse derivatives and the dual simple fibration

Suppose C is the category of smooth maps between Rn’s.

For an f : A −→ B, in addition to D[f ] : A× A −→ B, there is also a
map called the reverse derivative of f

R[f ] : A× B −→ A

given by sending (a, b′) to the transpose of the Jacobian of f at a
times the vector b′.

For example, for f : R2 −→ R, D[f ] : R2 × R2 −→ R is defined by

D[f ](a, a′) =
df

dx1
(a1) · a′1 +

df

dx2
(a2) · a′2

while R[f ] : R2 × R −→ R2 is defined by

R[f ](a, b′) =

[
df

dx1
(a1) · b′, df

dx2
(a2) · b′

]
.

This gives a section of the dual of the simple fibration, and more
generally any reverse derivative category does as well.
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Dual of the codomain fibration

The dual fibration of the codomain fibration Arr(C) −→ C has been
called the category of dependent lenses (Spivak, 2020); an arrow
from (a : A′ −→ A) to (b : B ′ −→ B) consists of

f : A −→ B (“get”) and

f ∗ : A×f ,a B
′ −→ A′ (“put”)

where A×f ,a Y is the pullback of f along a:

A×f ,a Y
π1 //

π0

��

D

b

��
A

f
// B

In the category of smooth manifolds, the cotangent bundle functor
gives a section of the dual of submersion fibration.

(Currently working on defining “cotangent” categories, these should
also give a section of a certain dual fibration...)
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Towards partiality

Thus, one way to view differential/reverse
differential/tangent/cotangent structure is as sections to certain
fibrations.

Our goal is to look at versions of these for categories where maps
are only partially defined.

For example, we want to be able to work with the categories of Rn’s
or smooth manifolds in which the maps need only be defined on
some subset of their domain.

One nice way to handle partial maps are restriction categories.
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Restriction categories

Definition

A restriction category (Cockett/Lack 2002) is a category C equipped
with an operation which takes a map f : A −→ B in C and gives a map
f : A −→ A which satisfies four identities:

[R.1] f f = f [R.2] f g = g f [R.3] f g = f g [R.4] f g = fg f

The prototypical restriction category is the category of sets and
partial maps, where f is a partial identity: it is defined to be x when
f (x) is defined, and undefined otherwise.

The category whose objects are Rn’s and whose maps are smooth
partial functions is similarly a restriction category, as is the category
of smooth manifolds and smooth partial functions between
manifolds.

Note: an arrow f : A −→ B need not have a “domain object” on which it
is fully defined! The partiality of f is encoded in the arrow f , not in an
object.
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Partiality and derivatives

In the category of smooth partial maps between Rn’s:

If f : U ⊆ Rn −→ V ⊆ Rm is only defined on some open subset of U,
then its derivative

D[f ] : U × Rn −→ Rm

is defined in the first component exactly where f is, but is totally
defined in its second component.

That is, in terms of restriction structure,

D[f ] = f × 1.

Thus a natural choice for maps in a restriction version of the simple
fibration would consist of pairs (f , f ′) such that

f ′ = f × 1.
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Restriction version of the simple fibration

More precisely:

Definition

For a restriction category C with restriction products, let C[C] denote the
restriction category with:

objects pairs (A,A′);

morphisms (f , f ′) : (A,A′) −→ (B,B ′) are

A
f−−→ B, A× X

f ′−−→ Y with f ′ = f × 1

composition as before: (f , f ′) ◦ (g , g ′) := (fg , 〈π0f , f
′〉g ′);

restriction (f , f ′) := (f , f ′π1 = π0f ).



Introduction Fibrations The dual fibration Towards partiality

The restriction simple fibration is not a fibration

Unfortunately, this is not a fibration over C!

(C ,C ′)

(h,g ′)

��

(g ,g ′)

$$J
JJ
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JJ

(A,A′)
(f ,π0)

// (B,B ′)

7→

C

h
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g
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@

A
f
// B

We need g ′ = h × 1, but we only have g ′ = g × 1.

There is no reason why g = h.

So we modify the definition of fibration between restriction categories...
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Latent fibration definition

Definition

For a restriction functor p : E −→ B, a prone arrow is a map f : X −→ Y
in E so that for any g : Z −→ Y in E and h : p(Z ) −→ p(X ) in B so that
hp(f ) = p(g) and h = p(g) there is a unique h′ : Z −→ X so that
p(h′) = h, h′f = g and h′ = g :

Z

h′

��

g

  @
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@

X
f
// Y

7→

p(Z )

h
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p(X )
p(f )
// p(Y )

Definition

A restriction functor p : E −→ B is a latent fibration if every α : A −→ B
in B and Y over B there is a prone arrow over α.
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Next time...

Presented this way, the definition can be feel a bit ad-hoc. However:

We’ll see next time that there is a nice theoretical explanation for
the definition: latent fibrations can be seen as fibrations relative to a
certain 2-category of restriction categories.

Moreover, latent fibrations enjoy many of the nice theoretical
properties of ordinary fibrations (partly because of the above fact).

But some things are subtly different: for example, in general, a
latent fibration need not have a dual.

We’ll investigate what structure a latent fibration must have to
possess a dual (and this is structure that both the restriction
versions of the simple fibration and the codomain fibration enjoy.)
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