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From last time...

Last time, we looked at the following:

Discussed how the simple fibration and the codomain fibration
appear naturally when talking about the derivative and the tangent
bundle.

Saw that a natural restriction version of the simple fibration is not a
fibration (a similar issue occurs with the codomain fibration).

Briefly discussed the dual fibration, and why in general a restriction
version of it may not exist (though it would be useful to have one
for a reverse derivative and/or a cotangent bundle on categories of
smooth partial maps).

Introduced latent fibrations: a modification of the fibration notion
for restriction categories.
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Overview for today

Today: more on latent fibrations:

How they can be seen as a fibration in a certain 2-category

Properties that general latent fibrations do and do not enjoy

Types of latent fibrations and what properties they enjoy

The dual fibration of the nicest kind of latent fibrations:
hyperfibrations.
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Restriction categories

Definition

A restriction category (Cockett/Lack 2002) is a category C equipped
with an operation which takes a map f : A −→ B in C and gives a map
f : A −→ A which satisfies four axioms:

[R.1] f f = f [R.2] f g = g f [R.3] f g = f g [R.4] f g = fg f

Examples:

Sets and partial functions

Smooth partial functions between Rn’s

Smooth partial functions between smooth manifolds

More generally, any partial map category is a restriction category
(built by assuming a pullback-stable collection of monics)

Any category is a restriction category in which for each f : A −→ B
one defines f = 1A.
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Restriction categories basics

Definition

In a restriction category C:

A map f : A −→ B is said to be total if f = 1A.

A partial inverse of a map f : A −→ B is a map g : B −→ A such
that fg = f and gf = g . For example, 1

x−1 : R −→ R does not have

an inverse but it does have a partial inverse 1
x + 1.

We can define a partial order on hom-sets of a restriction category:
for maps f , g : A −→ B, f ≤ g if f g = f . (g is defined wherever f is,
and is equal to f on f ’s domain). For example,

x2 − 1

x − 1
≤ x + 1
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Restriction idempotents

In a restriction category C:

A restriction idempotent is a map e : A −→ A such that e = e.

For each f , f is a restriction idempotent (its “domain of definition”).

You can split restriction idempotents to form a restriction category
Splitr (C), thus “making the domains of definition actual objects”.
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Restriction functors and semifunctors

If C and D are restriction categories:

Definition

A restriction functor F : C −→ D is a functor that preserves restrictions,
ie., for any f in C, F (f ) = F (f ).

Definition

A restriction semifunctor F : C −→ D is a map of objects and arrows
that preserves composition and restriction (but not necessarily identities).

Note, however, that while restriction semifunctors do not necessarily
preserve identities, they do at least send identities to restriction
idempotents:

F (1A) = F (1A) = F (1A),

so F (1A) is still a restriction idempotent.
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Restriction transformations

Definition

If F ,G : C −→ D are restriction semifunctors, a restriction
transformation α : F ⇒ G has components αC : FC −→ GC such that
the naturality squares commute: for any f : A −→ B,

F (f )αB = αAG (f )

but also, for each object C ,

αC = F (1C ).

(Note that if the restriction semifunctors are actual functors, this forces
each component to be total.)

Definition

Let rCats be the 2-category of restriction categories, restriction
semifunctors, and restriction transformations.
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Fibrations in a 2-category

Definition (Street 1974)

For a 1-cell p : E −→ B, in a 2-category, a 2-cell α : e′ ⇒ e is
p-Cartesian if for all F : Y −→ X and all 2-cells

Y
e′′ //

⇓ξ
F   @

@@
@@

@@
@ E

X

e

??~~~~~~~

Y
e′′ //

F
��

⇓γ

E

p

��
X

e′
// E

p
// B

such that pξ = pαF · γ, there is a unique 2-cell ζ : e′′ ⇒ e′F such that
ξ = αF · ζ and pζ = γ. p : E −→ B is a fibration if every 2-cell

X
e //

b

⇒β

��@
@@

@@
@@

@ E

p

��
B

has a p-Cartesian lift: α : e′ ⇒ e Cartesian so that pα = β.
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Latent fibration definition (slightly generalized)

Definition

For a restriction semifunctor p : E −→ B, a prone arrow is a map f : X
−→ Y in E so that for any g : Z −→ Y in E and h : p(Z ) −→ p(X ) in B so
that hp(f ) = p(g) and h = p(g) there is a unique h′ : Z −→ X so that
p(h′) = h, h′f = g and h′ = g :

Z

h′

��

g

  @
@@

@@
@@

@

X
f
// Y

7→

p(Z )

h

��

p(g)

""F
FF

FF
FF

F

p(X )
p(f )
// p(Y )

Definition

A restriction semifunctor p : E −→ B is a latent fibration if every α : A
−→ B in B and Y over B such that α = αp(1Y ) there is a prone arrow
over α.
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Fibrations in rCats

Fibrations in the 2-category rCats are precisely latent fibrations as
defined on the previous slide.

This is not a completely straightforward proof...it does take a fair bit
of work translating between the two notions.

In most of our examples, the latent fibrations will have the projection
functor p : E −→ B be a restriction functor (not a semi-functor).

These are not the same as fibrations in the 2-category of restriction
categories, restriction functors, and transformations: it is important
that the universal property is with respect to restriction
semifunctors, even if the functor itself is not semi.
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Examples

1 If X has latent products, the strict simple latent fibration X[X]
has maps (f , f ′) : (A,A′) −→ (B,B ′) with

f : A −→ B, f ′ : A× A′ −→ B ′

such that f ′ = f × 1.
2 The lax simple latent fibration X(X) is as above, except

f ′ ≤ f × 1.
3 For any restriction category with latent pullbacks, the strict

codomain latent fibration X→ has objects maps a : A′ −→ A; and
maps commuting squares

A′

=a

��

f ′ // B ′

b
��

A
f
// B

such that f ′b = f ′.
4 The lax codomain latent fibration X is as above but with

f ′b ≤ af (as opposed to equality).
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More examples

1 For any functor F : X −→ Set one may form the category of elements
as an (ordinary) discrete fibration ∂F : Elt(F ) −→ X. If X is a
restriction category then Elt(F ) is also a restriction category and ∂F
is a latent fibration.

2 The category of restriction idempotents in X, O(X) is a latent
fibration over X: it has objects pairs (X , e) where e is a restriction
idempotent on X and maps f : (X , e) −→ (X ′, e′) such that e ≤ fe′.

3 The restriction-idempotent splitting Splitr (X) of X is a latent
fibration over X (which is a genuine semifunctor).

4 For any restriction category Y, the projection X×Y −→ X is a latent
fibration.

5 Nester defined a latent fibration of assemblies (see his thesis)

6 Any ordinary fibration is a latent fibration (with respect to the trivial
restriction structures).
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Some basic results about latent fibrations

Identities and isomorphisms are prone.

The composite of two prones maps is prone.

Latent fibrations are closed under composition and pullback.

The correct generalization of vertical maps are subvertical maps:
maps v : X −→ X ′ such that p(v) is a restriction idempotent (not
necessarily an identity).

If p : E −→ B is a latent fibration, any map f : X −→ Y in E uniquely
factors as a subvertical v followed by a prone c :

X

v

��

f

  A
AA

AA
AA

A

X ′
c
// Y

such that f = v and p(c) = p(v) = p(v).
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Indexed restriction categories

Is there an indexed version of a latent fibration?

The correct maps in the fibre over B ∈ B is the collection of
subvertical maps over B.

These give restriction categories p(−1)(B), and we get a
pseudofunctor

p(−1) : Bop −→ rCats .

However, to go back (from one of these objects to a latent fibration)
we need additional data related to this pseudofunctor, so the
“indexed” version of latent fibrations are not quite as nice as the
ordinary case.
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Some basic non-results about latent fibrations

However, some things are not true about arbitrary latent fibrations:

Partial isomorphisms need not be prone.

Restriction idempotents need not be prone.

The (latent) pullback of a subvertical and a prone need not exist
(recall that the pullback of a vertical and Cartesian does always exist
for an ordinary fibration).

The restriction-idempotent splitting of a latent fibration need not be
a latent fibration.

The dual of a latent fibration need not exist (as noted last time, this
is not surprising since the dual of a restriction category is usually not
a restriction category).
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Separated fibrations

Definition

A restriction semifunctor p : E −→ B is said to be separated if for any
restriction idempotents e, e′ on X in E, p(e) = p(e′) implies e = e′.

Some nice results follow from this assumption:

Theorem

For any restriction semifunctor p : E −→ B, the following are equivalent:

1 p is separated;

2 all partial isomorphisms in E are p-prone;

3 all restriction idempotents in E are p-prone.

Theorem

If p : E −→ B is a separated latent fibration, there is a latent pullback of
any sub-vertical along any prone in E.
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Admissible latent fibrations

Definition

A restriction semifunctor p : E −→ B is said to be admissible if for any X
in E and any e a restriction idempotent on p(X ) in B such that
ep(1X ) = e, there is a prone restriction idempotent e∗ on X over e.

While splitting doesn’t preserve general latent fibrations, we do have:

Theorem

If p : E −→ B is a separated latent fibration, then

Splitr (p) : Splitr (E) −→ Splitr (B)

is also a separated latent fibration.
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Hyperconnected latent fibrations

Definition

A restriction semifunctor p : E −→ B is said to be hyperconnected if for
any X ∈ E, the map

p|O(X ) : O(X ) −→ {d ∈ O(p(X )) : dp(1X ) = d}

sending e ∈ O(X ) to p(e) is an isomorphism.

Theorem

A semifunctor p: E −→ B is hyperconnected if and only if it is separated
and admissible.

So hyperconnected latent fibrations (which we’ll call hyperfibrations)
are especially nice.
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Examples of types

Latent fibration Admissible Separated Hyperfibration
(strict) X[X] −→ X X X X

(lax) X(X) −→ X X × ×
(strict) X→ −→ X X X X

(lax) X −→ X X × ×
O(X) −→ X × X ×

Elt(F ) −→ X × X ×
Asm(F ) −→ X X X X

Splitr (X) −→ X X X X
X× Y −→ X X × ×

Ordinary fibration X X X
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Dual latent fibrations

In general, a latent fibration will not have a dual. But latent
hyperfibrations will.

Given a latent fibration p : E −→ B, we want to define a new latent
fibration with objects as before, but with a map X −→ Y an (an
equivalence class of) a pair (v , c):

S

c

��?
??

??
??

v

����
��
��
�

X Y

where v is subvertical and c is prone.
One immediate problem is how to define the restriction of such a
map! It would need to be a span

S ′
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@

~~~~
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X X

But both v and c are endomorphisms on S!
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Restriction for the dual

However, since
S

v−−→ X

is subvertical, p(v) is a restriction idempotent on p(S) = p(X ).

So if p : E −→ B is admissible, then (by definition) there is a prone
restriction idempotent v̂ : X −→ X over p(v), so we can define the
restriction of

S

c
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v
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X Y
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X
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Composition for the dual

Recall that composition in the (ordinary) dual fibration is by
pullback:
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X Y Z

This works in the restriction setting if p : E −→ B is separated: as
mentioned before, for p separated, one can form the latent pullback
of a subvertical along a prone.
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Results about the dual

Thus, for any latent hyperfibration p : E −→ B, there is an associated
dual latent hyperfibration p∗ : E∗ −→ B.

There’s quite a bit to check, but it all works out, in some cases
using other results that follow from the

hyperfibration = separated + admissible

condition.
For example, one another important result that is useful for proving
results about the dual is that if p : E −→ B is separated and

X

f1
��

f

!!C
CC

CC
CC

C

X ′
f2

// X ′′

commutes such that f1 = f and f and f2 are both prone, then so is
f1 (this generalizes another well-known result in the ordinary case.)
One can also prove other nice properties of the dual fibration such as

(p∗ : E∗ −→ B)∗ ∼= (p : E −→ B).
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Concluding thoughts on latent fibrations

I think there’s a surprising amount of nice results and theory around
latent fibrations.

The definition can naturally be seen as a fibration in a particular
2-category.

There are a variety of examples of latent fibrations.

General latent fibrations satisfy some, but not all, of the analagous
properties of ordinary fibrations.

There are several natural conditions one could ask of a latent
fibration, and each of these produce nice results, including being
able to build duals for latent hyperfibrations.
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