The dual fibration, part one: total case

Geoff Cruttwell
(with Robin Cockett, Jonathan Gallagher, Dorette Pronk)

June 12, 2020



Motivation
®0000000

Overview

Today I'll discuss a construction, originally due to Keek Bénabou, of how
to build the dual fibration to a given fibration, and include some
motivation about why this construction is interesting.

o Next time, we'll see how to generalize these ideas to the setting of
restriction categories (and why one might want to do this).
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The derivative

Recall that for any smooth map f : U CR" — V C R™, the derivative
of f can be viewed as a map

D[f]: Ux R" — R™,

where D[f](x, v) := J(f)(x) - v, the Jacobian of f at x in the direction v.

@ This operation satisfies various rules, including the chain rule:

U x rr 218, gk
U gn RO m Dl o

@ This can be understood as saying that D is a functor from the
category sm of smooth functions to the simple fibration over sm.
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The simple fibration

For any category C with binary products, the simple fibration over C,
C[C], is the category with:

@ an object is a pair of objects (A, X) from C;

@ an arrow from (A, X) to (B, Y) is a pair of arrows (f, g) with

ALy Band Ax X 55y

o composite of (A, X) —€.s (B, Y) with (B, Y) 252, (¢, Z) is

(mof, ')

Ax X Bxy -£,7

Thus the derivative gives a functor from sm to sm[sm]:
e Send U C R" to (U,R");
e Send f: UCR" — V CR™ to the pair (f, D[f]).
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The reverse derivative

There has been much recent interest in the reverse derivative of a
smooth map f: UCR" — V C R™.

@ It produces a map
R[f]: Ux R™ — R"

defined by R[f](u, w) := [J(F)(x)]T - w.
o It satisfies the “reverse” chain rule:
U x Rk KL, pn _

(mo, (f X 1)R[g])

U x R Uxrm R, g

@ This can be understood as saying that R is a functor from sm to the
dual simple fibration over sm.
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The dual simple fibration

For any category C with binary products, the dual simple fibration over
C, C[C]*, is the category with:

@ an object is a pair of objects (A, X) from C;

@ an arrow from (A, X) to (B, Y) is a pair of arrows (f, g) with

ALy Band Ax Yy 55 x

(Note the reversal in direction!)
o composite of (A, X) —€s (B, Y) with (B, Y) " 252, (¢, Z) is

(mo, (f x 1)g’)

Ax Z AxY 5 x.

(A bit strange!)

Thus the reverse derivative gives a functor from sm to sm[sm]*.
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The dual simple fibration as “lenses”

(Spivak, 2019) calls an arrow (f, g) in C[C]* a lens.
@ Typically, a (state-based) lens involves arrows

get:A— B, put: AxB— A

satisfying three equations.

@ The rough idea is that “get” is a view of a database A, and the
“put” allows one to make updates to A if one updates the view B.

@ A lens in this sense is a morphism
(get, put) : (A, A) — (B, B)
in C[C]*.

@ However, the more general morphisms also appear in Haskell as
“polymorphic” lenses.
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1] n
Lenses” are everywhere

@ Moreover, (Hedges, 2018) identifies many other instances of such
lenses: backpropagation, learners, open games, the dialectica
interpretation, Moore machines...

@ Hedges writes “l spent most of the Applied Category Theory
workshop in Leiden telling everybody who would listen about all
onnections, rather like this:"
< Vi el Y

these ¢
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The simple fibration vs. the dual simple fibration

To recap:
@ In C[C], an arrow (f,g) : (A, X) — (B, Y) has

f:A—B,g:AxX — Y.

(Think: ordinary derivative).
e In C[C]*, an arrow (f,g) : (A, X) — (B, Y) has

f:A—=Bg:AxY — X.

(Think: reverse derivatives, lenses).

Note: C[C]* is not the opposite category of C[C]! It is, however, an
instance of a more general construction known as the dual fibration of a
fibration.
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Fibration definition

Definition

For a functor p : E — B, a Cartesian arrow isa map f : X — Y in E
so that for any g : Z — Y in E and h: p(Z) — p(X) in B so that
hp(f) = p(g), there is a unique h’ : Z — X so that p(h’) = h and
Hf=g:
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Fibration definition

Definition

For a functor p : E — B, a Cartesian arrow isa map f : X — Y in E
so that for any g: Z — Y in E and h: p(Z) — p(X) in B so that
hp(f) = p(g), there is a unique h’ : Z — X so that p(h’) = h and

Hf=g:
Z p(Z)
" X = hi p(g)
'
X—=Y p(X) p(Y)

A functor p : E — B is said to be a fibration if for any o : A — B in B,
and any Y such that p(Y) = B, there is a Cartesian arrow

af X =Y

over q, i.e., such that p(a*) = a.
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The simple fibration as a fibration

The obvious projection C[C] — C is a fibration.

Proof.

Given f : A— B in C and (B, X) over B, define

£* 1 (A, X) — (B, X) by f* = (f,m).

Indeed,
(C,Y) c
(h,k) wi — hl\i
\
(A, X) = (B, X) A8
,7T0
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Fibration examples

There are many examples of fibrations. We'll focus on a few:
@ The simple fibration is a fibration.
@ The dual simple fibration is a fibration.

For any category C, let Arr(C) be the arrow category: objects are arrows
of C, and morphisms are commutative squares

f

C——=D
|
X——Y
g

@ For any C, the domain functor Arr(C) — C is a fibration.

@ For any C with pullbacks, the codomain functor Arr(C) — C is a
fibration.

@ For any C with a display system (pullback-closed system of maps),

the subcategory of the arrow category consisting of the maps in the
display system is a fibration over C.
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The indexed category of a fibration

Let p: E — B be a fibration with chosen Cartesian liftings (ie.,
“cloven™).

@ Say an arrow f : X — Y in E is vertical if p(f) is an identity.

o For A € B, there is a category p~1(A) (the “fibre over A"’) whose
objects are the objects in [E over A and whose arrows are the vertical
arrows over 14.

@ Each a: A — B in B gives a functor
o p7H(B) = pH(A).
@ All together, one gets a pseudofunctor
B — CAT

(A "B-indexed category”)
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The indexed category of the simple fibration

For example, for the simple fibration p : C[C] — C with an A€ C:
@ An object of p~1(A) is a pair (A, X).
@ So an object is really just an object X of C.
o An arrow (f,g) : (A, X) — (A, Y) must have f = 14.
@ So an arrow from X to Y is just an arrow g : Ax X — Y.
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Indexed category vs. fibrations

Conversely, given any pseudofunctor
F :B°% — CAT

one can build a category Gro(F), called the “category of elements” or
“Grothendieck construction” which is a fibration over B.

@ This gives an equivalence
((Cloven) Fibrations over B) 2 (pseudofunctors B°? — CAT)

@ Both sides of this equivalence give important perspectives!
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The dual indexed category

The “dual” we want to do is take the opposite in each fibre.
@ With the indexed category point of view, it is easy to define this!

@ Simply post-compose the indexed category F with the (covariant!)
functor ()P : CAT — CAT:

B -5 CAT —2— CAT

@ Doing this to the simple fibration gives the dual simple fibration.

@ But it will be (very) helpful to have a direct description of this in
terms of the original fibration.
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The dual fibration

This idea is originally due to (Bénabou, 1975). Let p: E — B be a
fibration.

@ One can show that any arrow f : X — Y in E uniquely factors as a
vertical v followed by a cartesian c:

X/S\Y
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The dual fibration

This idea is originally due to (Bénabou, 1975). Let p: E — B be a
fibration.

@ One can show that any arrow f : X — Y in E uniquely factors as a
vertical v followed by a cartesian c:

X/S\Y

@ So to dualize we just reverse the direction of the vertical arrow!

@ Define E* to have the same objects as E, but an arrow X — Y
consists of a vertical v:S — X, c: S — Y:

X/S\Y
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The dual fibration continued

Wait a minute! Does this actually work?!?

@ Fortunately, the pullback of a vertical and cartesian with the same
codomain does always exist.

@ Thus,we can define composition by pullback:
P
N
S T
X Y V4

@ One can show that the resulting functor E* — B is again a
fibration, and the fibres of [E* are the opposites of the fibres of E.
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Dual fibration examples

Some examples:

© The dual fibration of the simple fibration is the dual simple fibration
(“lenses”).

@ The dual fibration of the codomain fibration Arr(C) — C is the
“category of dependant lenses”: an arrow from (a: X — A) to
(b:Y — B) consists of

f:A— B ("get") and
g:AXra Y — X (“put”)

where A x¢ , Y is the pullback of f along a:

Axe, Y 2D

o £

A f
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Dual fibration examples continued

@ In the dual of the display fibration in smooth manifolds (display
maps being submersions) a map of the form

TS Ax B
lp — \Lﬂ—l
S B

consists of maps f :' S — B, g: S x A — TS, these are "open
dynamical systems” (see Spivak, 2019).

@ The dual fibration of the domain fibration Arr(C) — C is the
“twisted arrow category of C": objects are arrows of C, and an arrow
from (a: X — A) to (b: Y — B) is a factorization of a through b:

X—tovy

| b

A<~—B
g
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A restriction version of the simple fibration

Our real goal, however, is to look at partial /restriction versions of all this.

@ Again, one motivation comes from derivatives.
o If f: UCR" — V C R™is only defined on some open subset of U,
then its derivative
D[f]: UxR" — R™
is defined exactly where f is.
e That is, in terms of restriction categories, D[f] = f x 1.

@ Thus, if C is a restriction category, a natural restriction version of
C[C] has maps (f,g) : (A, X) — (B, Y) as before

f:A—Bg:AxX —Y

but now such that g = f x 1.

@ This makes sense from the perspective of “partial lenses” as well.
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The restriction simple fibration is not a fibration

Unfortunately, this is not a fibration over C!

(C.Y)

C
(h,k) &’ki - hl \\i
A

(A X) — (B.X)

o We need k = h x 1, but only have?zgxl.

@ There is no reason why g = h.
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Towards latent fibrations

Next time, we'll begin by looking at latent fibrations, originally due to
(Nester, 2017).

o A latent fibration will only ask for liftings of “precise” triangles in
the base: triangles where g = h.

e Of course, it's still not clear that we'll even get a dual version of
this, as the opposite of a restriction category is not usually a
restriction category...

@ Nevertheless, we'll see that in many cases of interest, there is a dual

fibration of a latent fibration, including for the simple latent fibration
described above.
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