Motivation 00000000 Fibrations 000000 The dual fibration

Towards partiality 0000

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The dual fibration, part one: total case

Geoff Cruttwell (with Robin Cockett, Jonathan Gallagher, Dorette Pronk)

June 12, 2020

Motivation	Fibrations	The dual fibration	Towards partiality
•0000000	000000	00000	0000
Overview			

Today I'll discuss a construction, originally due to Kock Bénabou, of how to build the *dual* fibration to a given fibration, and include some motivation about why this construction is interesting.

• Next time, we'll see how to generalize these ideas to the setting of restriction categories (and why one might want to do this).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Motivation	Fibrations	The dual fibration	Towards partiality
0000000	000000	00000	0000
The derivative			

Recall that for any smooth map $f: U \subseteq \mathbb{R}^n \to V \subseteq R^m$, the derivative of f can be viewed as a map

$$D[f]: U \times R^n \to R^m,$$

where $D[f](x, v) := J(f)(x) \cdot v$, the Jacobian of f at x in the direction v.

• This operation satisfies various rules, including the chain rule:

$$U \times \mathbb{R}^n \xrightarrow{D[fg]} \mathbb{R}^k =$$
$$U \times \mathbb{R}^n \xrightarrow{\langle \pi_0 f, D[f] \rangle} V \times \mathbb{R}^m \xrightarrow{D[g]} \mathbb{R}^k$$

• This can be understood as saying that *D* is a functor from the category **sm** of smooth functions to the simple fibration over **sm**.

Motivation	Fibrations	The dual fibration	Towards partiality
0000000	000000	00000	0000
The simple f	ibration		

Definition

For any category $\mathbb C$ with binary products, the simple fibration over $\mathbb C,$ $\mathbb C[\mathbb C],$ is the category with:

- an object is a pair of objects (A, X) from \mathbb{C} ;
- an arrow from (A, X) to (B, Y) is a pair of arrows (f, g) with

$$A \xrightarrow{f} B$$
 and $A \times X \xrightarrow{g} Y$

• composite of $(A, X) \xrightarrow{(f, g)} (B, Y)$ with $(B, Y) \xrightarrow{(f', g')} (C, Z)$ is

$$A \times X \xrightarrow{\langle \pi_0 f, f' \rangle} B \times Y \xrightarrow{g'} Z$$

Thus the derivative gives a functor from sm to sm[sm]:

- Send $U \subseteq \mathbb{R}^n$ to (U, \mathbb{R}^n) ;
- Send $f: U \subseteq \mathbb{R}^n \to V \subseteq \mathbb{R}^m$ to the pair (f, D[f]).

Motivation	Fibrations	The dual fibration	Towards partiality
0000000			
The reverse	derivative		

There has been much recent interest in the *reverse* derivative of a smooth map $f : U \subseteq \mathbb{R}^n \to V \subseteq R^m$.

• It produces a map

$$R[f]: U \times R^m \to R^n$$

defined by $R[f](u, w) := [J(f)(x)]^T \cdot w$.

• It satisfies the "reverse" chain rule:

$$U \times \mathbb{R}^{k} \xrightarrow{\mathbb{R}[fg]} \mathbb{R}^{n} =$$
$$U \times \mathbb{R}^{k} \xrightarrow{\langle \pi_{0}, (f \times 1)\mathbb{R}[g] \rangle} U \times \mathbb{R}^{m} \xrightarrow{\mathbb{R}[f]} \mathbb{R}^{n}$$

• This can be understood as saying that *R* is a functor from **sm** to the *dual* simple fibration over **sm**.

The dual sim	nle fibration		
0000000	000000	00000	0000
Motivation	Fibrations	The dual fibration	Towards partiality

Definition

For any category \mathbb{C} with binary products, the **dual simple fibration over** \mathbb{C} , $\mathbb{C}[\mathbb{C}]^*$, is the category with:

- an object is a pair of objects (A, X) from \mathbb{C} ;
- an arrow from (A, X) to (B, Y) is a pair of arrows (f, g) with

$$A \xrightarrow{f} B$$
 and $A \times Y \xrightarrow{g} X$

(Note the reversal in direction!)

• composite of $(A, X) \xrightarrow{(f, g)} (B, Y)$ with $(B, Y) \xrightarrow{(f', g')} (C, Z)$ is

$$A imes Z \xrightarrow{\langle \pi_0, (f imes 1)g'
angle} A imes Y \xrightarrow{f'} X.$$

(A bit strange!)

Thus the reverse derivative gives a functor from sm to sm[sm]*.

(Spivak, 2019) calls an arrow (f,g) in $\mathbb{C}[\mathbb{C}]^*$ a **lens**.

• Typically, a (state-based) lens involves arrows

get :
$$A \rightarrow B$$
, put : $A \times B \rightarrow A$

satisfying three equations.

- The rough idea is that "get" is a view of a database A, and the "put" allows one to make updates to A if one updates the view B.
- A lens in this sense is a morphism

$$(get, put) : (A, A) \rightarrow (B, B)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

in $\mathbb{C}[\mathbb{C}]^*$.

• However, the more general morphisms also appear in Haskell as "polymorphic" lenses.

"Lenses"	are everywhere		
00000000	000000	00000	0000
Motivation	Fibrations	The dual fibration	Towards partiality

- Moreover, (Hedges, 2018) identifies many other instances of such lenses: backpropagation, learners, open games, the dialectica interpretation, Moore machines...
- Hedges writes "I spent most of the Applied Category Theory workshop in Leiden telling everybody who would listen about all these connections, rather like this:"

The simple	fibration vs	the dual simple fibration	
0000000	000000	00000	0000
Motivation	Fibrations	The dual fibration	Towards partiality

To recap:

• In $\mathbb{C}[\mathbb{C}]$, an arrow $(f,g):(A,X) \to (B,Y)$ has

$$f: A \rightarrow B, g: A \times X \rightarrow Y.$$

(Think: ordinary derivative).

• In $\mathbb{C}[\mathbb{C}]^*$, an arrow (f,g):(A,X)
ightarrow (B,Y) has

$$f: A \rightarrow B, g: A \times Y \rightarrow X.$$

(Think: reverse derivatives, lenses).

Note: $\mathbb{C}[\mathbb{C}]^*$ is *not* the opposite category of $\mathbb{C}[\mathbb{C}]!$ It is, however, an instance of a more general construction known as the **dual fibration** of a fibration.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Definition

A functor $p : \mathbb{E} \to \mathbb{B}$ is said to be a **fibration** if for any $\alpha : A \to B$ in \mathbb{B} , and any Y such that p(Y) = B, there is a Cartesian arrow

$$\alpha^*: X \to Y$$

over α , i.e., such that $p(\alpha^*) = \alpha$.

Motivation	Fibrations	The dual fibration	Towards partiality
	000000		
The simple	fibration as a fil	oration	

The obvious projection $\mathbb{C}[\mathbb{C}] \to \mathbb{C}$ is a fibration.

Proof.

Given $f : A \rightarrow B$ in \mathbb{C} and (B, X) over B, define

$$f^*: (A, X) \rightarrow (B, X)$$
 by $f^* = (f, \pi_0)$.

Indeed,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Fibration eva	mnles	00000	0000
	mpics		

There are *many* examples of fibrations. We'll focus on a few:

- The simple fibration is a fibration.
- 2 The dual simple fibration is a fibration.

For any category \mathbb{C} , let Arr(\mathbb{C}) be the arrow category: objects are arrows of \mathbb{C} , and morphisms are commutative squares

- **③** For any \mathbb{C} , the domain functor $Arr(\mathbb{C}) \to \mathbb{C}$ is a fibration.
- $\textcircled{\ }$ For any $\mathbb C$ with pullbacks, the codomain functor $Arr(\mathbb C)\to\mathbb C$ is a fibration.
- Solution over C.
 Solution over C.

The indexed	category of a	fibration	
0000000	000000	00000	0000
Motivation	Fibrations	The dual fibration	Towards partiality

Let $p:\mathbb{E}\to\mathbb{B}$ be a fibration with chosen Cartesian liftings (ie., "cloven").

- Say an arrow $f: X \to Y$ in \mathbb{E} is **vertical** if p(f) is an identity.
- For A ∈ B, there is a category p⁻¹(A) (the "fibre over A" ') whose objects are the objects in E over A and whose arrows are the vertical arrows over 1_A.
- Each $\alpha : A \to B$ in $\mathbb B$ gives a functor

$$\alpha^*: \mathsf{p}^{-1}(B) \to \mathsf{p}^{-1}(A).$$

• All together, one gets a pseudofunctor

$$\mathbb{B}^{op} \to \mathsf{CAT}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

(A "B-indexed category")

Motivation	Fibrations	The dual fibration	Towards partiality
	000000		
The indexed	category of t	he simple fibration	

For example, for the simple fibration $p : \mathbb{C}[\mathbb{C}] \to \mathbb{C}$ with an $A \in \mathbb{C}$:

- An object of $p^{-1}(A)$ is a pair (A, X).
- So an object is really just an object X of \mathbb{C} .
- An arrow $(f,g): (A,X) \rightarrow (A,Y)$ must have $f = 1_A$.
- So an arrow from X to Y is just an arrow $g: A \times X \to Y$.

Indexed category	vs. fibrations		
0000000	00000	00000	0000
Motivation	Fibrations	The dual fibration	Towards partiality

Conversely, given any pseudofunctor

$$F: \mathbb{B}^{op} \to \mathsf{CAT}$$

one can build a category Gro(F), called the "category of elements" or "Grothendieck construction" which is a fibration over \mathbb{B} .

• This gives an equivalence

((Cloven) Fibrations over \mathbb{B}) \cong (pseudofunctors $\mathbb{B}^{op} \to CAT$)

• Both sides of this equivalence give important perspectives!

The dual indexed	category		
		0000	
Motivation	Fibrations	The dual fibration	Towards partiality

The "dual" we want to do is take the opposite in each fibre.

- With the indexed category point of view, it is easy to define this!
- Simply post-compose the indexed category F with the (covariant!) functor ()^{op} : CAT → CAT:

$$\mathbb{B}^{op} \xrightarrow{F} \mathsf{CAT} \xrightarrow{()^{op}} \mathsf{CAT}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Doing this to the simple fibration gives the dual simple fibration.
- But it will be (very) helpful to have a direct description of this in terms of the original fibration.

Motivation	Fibrations	The dual fibration	Towards partiality
0000000	000000	00000	0000
The dual fibration			

This idea is originally due to (Bénabou, 1975). Let $p:\mathbb{E}\to\mathbb{B}$ be a fibration.

• One can show that any arrow $f : X \to Y$ in \mathbb{E} uniquely factors as a vertical v followed by a cartesian c:

Motivation	Fibrations	The dual fibration	Towards partiality
		00000	
The dual fibration			

This idea is originally due to (Bénabou, 1975). Let $p:\mathbb{E}\to\mathbb{B}$ be a fibration.

• One can show that any arrow $f : X \to Y$ in \mathbb{E} uniquely factors as a vertical v followed by a cartesian c:

- So to dualize we just reverse the direction of the vertical arrow!
- Define E* to have the same objects as E, but an arrow X → Y consists of a vertical v : S → X, c : S → Y:

Motivation	Fibrations	The dual fibration	Towards partiality
0000000	000000	00●00	0000
The dual fibration	on continued		

Wait a minute! Does this actually work?!?

- Fortunately, the pullback of a vertical and cartesian with the same codomain does always exist.
- Thus, we can define composition by pullback:

One can show that the resulting functor E^{*} → B is again a fibration, and the fibres of E^{*} are the opposites of the fibres of E.

Motivation	Fibrations	The dual fibration	Towards partiality
00000000	000000	000€0	0000
Dual fibration e	examples		

Some examples:

- The dual fibration of the simple fibration is the dual simple fibration ("lenses").
- On The dual fibration of the codomain fibration Arr(ℂ) → ℂ is the "category of dependant lenses": an arrow from (a : X → A) to (b : Y → B) consists of

 $f: A \rightarrow B$ ("get") and

$$g: A imes_{f,a} Y \to X$$
 ("put")

where $A \times_{f,a} Y$ is the pullback of f along a:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The dual fibration 0000

Dual fibration examples continued

In the dual of the display fibration in smooth manifolds (display) maps being submersions) a map of the form

$$\begin{array}{ccccc}
TS & & A \times B \\
\downarrow^{p} & \rightarrow & \downarrow^{\pi_{1}} \\
S & & B
\end{array}$$

consists of maps $f: S \rightarrow B$, $g: S \times A \rightarrow TS$; these are "open dynamical systems" (see Spivak, 2019).

9 The dual fibration of the *domain* fibration $Arr(\mathbb{C}) \to \mathbb{C}$ is the "twisted arrow category of \mathbb{C} ": objects are arrows of \mathbb{C} , and an arrow from $(a: X \rightarrow A)$ to $(b: Y \rightarrow B)$ is a factorization of a through b:

Δ	restriction	version of the	simple fibration	
				0000
Mo	tivation	Fibrations	The dual fibration	Towards partiality

Our real goal, however, is to look at partial/restriction versions of all this.

- Again, one motivation comes from derivatives.
- If $f: U \subseteq \mathbb{R}^n \to V \subseteq R^m$ is only defined on some open subset of U, then its derivative

 $D[f]: U \times \mathbb{R}^n \to R^m$

is defined exactly where f is.

- That is, in terms of restriction categories, $\overline{D[f]} = \overline{f} \times 1$.
- Thus, if \mathbb{C} is a restriction category, a natural restriction version of $\mathbb{C}[\mathbb{C}]$ has maps $(f,g): (A,X) \to (B,Y)$ as before

$$f: A \to B, g: A \times X \to Y$$

but now such that $\overline{g} = \overline{f} \times 1$.

• This makes sense from the perspective of "partial lenses" as well.

Unfortunately, this is not a fibration over $\mathbb{C}!$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- We need $\overline{k} = \overline{h} \times 1$, but only have $\overline{k} = \overline{g} \times 1$.
- There is no reason why $\overline{g} = \overline{h}$.

Motivation	Fibrations	The dual fibration	Towards partiality
			0000
Towards lat	ent fibrations		

Next time, we'll begin by looking at *latent* fibrations, originally due to (Nester, 2017).

- A latent fibration will only ask for liftings of "precise" triangles in the base: triangles where $\overline{g} = \overline{h}$.
- Of course, it's still not clear that we'll even get a dual version of this, as the opposite of a restriction category is not usually a restriction category...
- Nevertheless, we'll see that in many cases of interest, there is a dual fibration of a latent fibration, including for the simple latent fibration described above.

Motivation	Fibrations	The dual fibration	Towards partiality
00000000	000000	00000	000●
References			

- Bénabou, J. *Théories relatives à un corpus*. C. R. Acad. Sc. Paris, 281:A831-A834, 1975
- Hedges, J. Lenses for philosophers, blog post at https://julesh.com/2018/08/16/lenses-for-philosophers/
- Kock, A. *The dual fibration in elementary terms*. Available at arXiv:1501.01947.
- Nester, C. Turing categories and realizability. PhD thesis.
- Spivak, D. Generalized lens Categories via functors $\mathcal{C}^{op} \to CAT$. Available at arXiv:1908.02202.