Latent fibrations

Dual of a latent hyperfibration

The dual fibration, part two: partial case

Geoff Cruttwell (with Robin Cockett, Jonathan Gallagher, Dorette Pronk)

Introduction	Restriction categories	Latent fibrations	Dual of a latent hyperfibration	Conclusion
•0				
Overview				

Last time we reviewed how to define the *dual* fibration to any fibration

$$\mathsf{p}:\mathbb{E}\to\mathbb{B}.$$

- This construction produces interesting examples of fibrations, ones which involve maps going both forwards and backwards.
- Many applied situations seem to involve such maps, eg., lenses, learners, open games, reverse derivatives, etc.
- Today the goal is to see how we can work with fibrations and the dual fibration in categories of partial maps, ie., restriction categories.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

How can we construct dual fibrations of restriction categories when you can't take the opposite of a restriction category?

In particular, in what sense is the partial simple fibration, with maps

$$(A,X) \xrightarrow{(f,f')} (B,Y)$$

where

$$A \xrightarrow{f} B, \ A \times X \xrightarrow{f'} Y \text{ with } \overline{f'} = \overline{f} \times 1$$

"dual" to the category with maps

$$(A,X) \xrightarrow{(g,g')} (B,Y)$$

where

$$A \xrightarrow{g} B, \ A \times Y \xrightarrow{g'} X$$
 with $\overline{g'} = \overline{g} \times 1$?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

	Restriction categories	Latent fibrations	Dual of a latent hyperfibration	Conclusion
	000000			
Restrict	tion categories			

Definition

A restriction category (Cockett/Lack 2002) is a category \mathbb{C} equipped with an operation which takes a map $f : A \to B$ in \mathbb{C} and gives a map $\overline{f} : A \to A$ which satisfies four identities:

$$[\mathsf{R}.1] \ \overline{f}f = f \qquad [\mathsf{R}.2] \ \overline{f} \ \overline{g} = \overline{g} \ \overline{f} \qquad [\mathsf{R}.3] \ \overline{f} \ \overline{g} = \overline{\overline{f}g} \qquad [\mathsf{R}.4] \ f \overline{g} = \overline{\overline{fg}}f$$

- The prototypical restriction category is the category of sets and partial maps, where $\overline{f}(x)$ is defined to be x when f(x) is defined, and undefined otherwise.
- The category whose objects are \mathbb{R}^{n} 's and whose maps are smooth *partial* functions is similarly a restriction category.

Note: an arrow $f : A \rightarrow B$ need not have a "domain object" on which it is fully defined! The partiality of f is encoded in the arrow \overline{f} (a "restriction idempotent") not in an object.

Partial of	order and part	ial inverses		
00	000000	000000000000	000000	00
Introduction	Restriction categories	Latent fibrations	Dual of a latent hyperfibration	Conclusion

We'll need a few basic concepts from restriction categories.

Definition

For maps $f, g: A \to B$ in a restriction category \mathbb{C} , write $f \leq g$ if $\overline{f}g = f$.

- This captures the idea that f is less defined than g, but they are equal where they are both defined (eg., ^{x²−1}/_{x−1} ≤ x + 1).
- This gives a partial order on each homset, and these partial orders are compatible with composition.

Definition

A map $f: A \rightarrow B$ has a **partial inverse** $g: B \rightarrow A$ if

$$fg = \overline{f}$$
 and $gf = \overline{g}$.

• For example, $\frac{1}{2x}$ does not have an inverse (in the ordinary sense) but it does have a *partial* inverse $\frac{2}{x}$.

A D N A 目 N A E N A E N A B N A C N

Introduction 00	Restriction categories	Latent fibrations	Dual of a latent hyperfibration	Conclusion OO
Restrictio	n functors an	d semifunctors	5	

If $\mathbb C$ and $\mathbb D$ are restriction categories:

Definition

A restriction functor $F : \mathbb{C} \to \mathbb{D}$ is a functor that preserves restrictions, ie., for any g in \mathbb{C} , $F(\overline{g}) = \overline{F(g)}$.

Definition

A restriction semifunctor $F : \mathbb{C} \to \mathbb{D}$ is a map of objects and arrows that preserves composition and restriction (but not necessarily identities).

Note, however, that for restriction semifunctors

$$F(1_A) = F(\overline{1_A}) = \overline{F(1_A)},$$

so $F(1_A)$ is still a restriction idempotent (just not necessarily the identity).

	_			
00	000000	000000000000	000000	00
Introduction	Restriction categories	Latent fibrations	Dual of a latent hyperfibration	Conclusion

Restriction transformations

Definition

If $F, G: \mathbb{C} \to \mathbb{D}$ are restriction functors,

- a restriction transformation $\alpha : F \Rightarrow G$ is a natural transformation for which each component α_C is total;
- a lax restriction transformation $\alpha : F \Rightarrow G$ has total components $\alpha_C : FC \rightarrow GC$ such that for any $f : A \rightarrow B$,

 $F(f)\alpha_B \leq \alpha_A G(f).$

• These give 2-categories rCat and rCat₁.

Definition

If F, G are restriction semifunctors, a lax restriction transformation $\alpha: F \Rightarrow G$ has components $\alpha_C: FC \rightarrow GC$ such that $\overline{\alpha_C} = F(1_C)$ and for any $f: A \rightarrow B$, $F(f)\alpha_B \leq \alpha_A G(f)$.

• This gives a 2-category rCat_s.

Recall that \mathbb{C} has limits of shape \mathbb{D} if the diagonal $\Delta : \mathbb{C} \to \mathbb{C}^{\mathbb{D}}$ has a right adjoint in **Cat**. What is the correct notion for restriction categories?

Asking for a right adjoint in rCat is definately not correct. If C has even a terminal object T in this sense, then it has unique total maps t_A : A → T; this forces every map f : A → B in C to be total:

$$\overline{f} = \overline{f1_B} = \overline{f\overline{t_B}} = \overline{ft_B} = \overline{t_A} = 1_A.$$

Recall that \mathbb{C} has limits of shape \mathbb{D} if the diagonal $\Delta : \mathbb{C} \to \mathbb{C}^{\mathbb{D}}$ has a right adjoint in **Cat**. What is the correct notion for restriction categories?

Asking for a right adjoint in rCat is definately not correct. If C has even a terminal object T in this sense, then it has unique total maps t_A : A → T; this forces every map f : A → B in C to be total:

$$\overline{f} = \overline{f1_B} = \overline{f\overline{t_B}} = \overline{ft_B} = \overline{t_A} = 1_A.$$

• Asking for a right adjoint in **rCat**₁ gives **restriction limits**. However, these force splittings: eg., the diagram

$$A \xrightarrow{f} B$$

has a restriction limit if and only \overline{f} is a split restriction idempotent (ie., f has a "domain").

• For our purposes, a right adjoint in **rCat**_s, which is known as a **latent limit** (Cockett/Hofstra/Guo 2012), is the most useful.

	Restriction categories	Latent fibrations	Dual of a latent hyperfibration	Conclusion
	0000000			
Latent pullbacks				

For example, a latent pullback has the following:

with

$$\overline{h} = \overline{k} = \overline{hf} = \overline{kg}$$

and

$$\overline{\alpha} = \overline{bf} = \overline{ag}, \quad \alpha \overline{h} = \alpha \overline{k} = \alpha.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Note: the projections *h* and *k* need not be total! (They must be for *restriction* pullbacks).

	Restriction categories	Latent fibrations	Dual of a latent hyperfibration	Conclusion
00	000000	0000000000000	000000	00
Latent pullback example				

For example, for an $f : A \rightarrow B$, in general the diagram

need not have a restriction pullback, but it always has a latent pullback:

Note that this also means in general the latent pullback of a total arrow need not be total!

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

	Restriction categories	Latent fibrations	Dual of a latent hyperfibration	Conclusion
00	000000	••••••	000000	00
B				

Restriction version of the simple fibration

Recall from last time, we want to consider a restriction version of the simple fibration:

Definition

For a restriction category $\mathbb C$ with latent products, let $\mathbb C[\mathbb C]$ denote the restriction category with:

- objects pairs (A, X);
- morphisms $(f, f'): (A, X) \rightarrow (B, Y)$ are

$$A \xrightarrow{f} B, \ A \times X \xrightarrow{f'} Y \text{ with } \overline{f'} = \overline{f} \times 1$$

- composition as before: $(f, f') \circ (g, g') := (fg, \langle \pi_0 f, f' \rangle g');$
- restriction $\overline{(f, f')} := (\overline{f}, \overline{f'}\pi_1 = \overline{\pi_0 f}).$

Recall that one motivation for the condition $\overline{f'} = \overline{f} \times 1$ comes from derivatives:

$$\overline{D[f]} = \overline{f} \times 1.$$

・ロト ・西ト ・ヨト ・ヨー うへぐ

As noted last time, this is **not** a fibration over $\mathbb{C}!$

• We need $\overline{g'} = \overline{h} \times 1$, but only have $\overline{g'} = \overline{g} \times 1$.

• There is no reason why $\overline{g} = \overline{h}$.

latent fib	ration definition	on (Nester 201	7)	
00	000000	00000000000	000000	00
ntroduction	Restriction categories	Latent fibrations	Dual of a latent hyperfibration	Conclusion

Definition

For a restriction functor $p : \mathbb{E} \to \mathbb{B}$, a **prone arrow** is a map $f : X \to Y$ in \mathbb{E} so that for any $g : Z \to Y$ in \mathbb{E} and $h : p(Z) \to p(X)$ in \mathbb{B} so that hp(f) = p(g) and $\overline{h} = \overline{p(g)}$ there is a unique $h' : Z \to X$ so that p(h') = h, h'f = g and $\overline{h'} = \overline{g}$:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

l atent fih	ration definition	on (Nester 201	17)	
00	000000	00000000000	000000	00
ntroduction	Restriction categories	Latent fibrations	Dual of a latent hyperfibration	Conclusion

Definition

For a restriction functor $p : \mathbb{E} \to \mathbb{B}$, a **prone arrow** is a map $f : X \to Y$ in \mathbb{E} so that for any $g : Z \to Y$ in \mathbb{E} and $h : p(Z) \to p(X)$ in \mathbb{B} so that hp(f) = p(g) and $\overline{h} = \overline{p(g)}$ there is a unique $h' : Z \to X$ so that p(h') = h, h'f = g and $\overline{h'} = \overline{g}$:

Definition

A restriction functor $p : \mathbb{E} \to \mathbb{B}$ is said to be a **latent fibration** if for any $\alpha : A \to B$ in \mathbb{B} , and any Y such that p(Y) = B, there is a prone arrow $\alpha^* : X \to Y$ over α , i.e., such that $p(\alpha^*) = \alpha$.

Latent	fibration exam	nles		
00	0000000	0000000000000	000000	00
Introduction	Restriction categories	Latent fibrations	Dual of a latent hyperfibration	Conclusion

- ()The restriction version of the simple fibration is a latent fibration over $\mathbb{C}.$
- There is a lax version of the simple fibration (arrows (f, f') have $\overline{f'} \leq \overline{f} \times 1$); this is also a latent fibration over \mathbb{C} .

For any restriction category \mathbb{C} , let \mathbb{C}^{\rightarrow} be the restriction category whose objects are arrows of \mathbb{C} , with morphisms "semi-precise squares": commutative squares

such that $f = f\overline{y}$. Let \mathbb{C}^{\rightarrow} similar to \mathbb{C}^{\rightarrow} but with $xg \ge fy$ rather than equality.

● For any C with latent pullbacks, the codomain functors C[→] → C and C[→] → C are latent fibrations. (In fact, these are latent fibrations if and only if C has latent pullbacks!)

Latent fil	oration exam	ples continued		
00	000000	0000000000000	000000	00
Introduction	Restriction categories	Latent fibrations	Dual of a latent hyperfibration	Conclusion

- For any restriction category C, let O(C) denote the restriction category whose objects are pairs (A, e) where e is a restriction idempotent on A and whose morphisms f : (A, e) → (A', e') are maps f : A → A' such that e ≤ fe'; this is a latent fibration over C.
- Once generally, if we let C[≤] be the arrow category with now xg ≤ fy (with no "semi-precise" requirement), the domain functor C[≤] → C is a latent fibration. (There is a faithful functor from the previous category to this one).
- (Nester, 2017) Builds a category of "assemblies" Asm(F) out of any restriction functor F : C → X such that X has restriction products (generalizing a construction of assemblies from a partial combinatory algebra); this also gives a latent fibration over X.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

	Restriction categories	Latent fibrations	Dual of a latent hyperfibration	Conclusion
00	0000000	000000000000	000000	00
Theory o	f latent fibra	itions		

Much of the theory of fibrations works for a latent fibration $p:\mathbb{E}\to\mathbb{B}!$

- The composite of two prone maps is again prone.
- Every map in 𝔅 factors as a subvertical map followed by a prone map (g is subvertical if p(g) is a restriction idempotent).
- More generally, factorization systems in $\mathbb B$ lift to factorization systems in $\mathbb E$ (though one has to define factorization systems in a restriction category first...)

	Restriction categories	Latent fibrations	Dual of a latent hyperfibration	Conclusion
00	0000000	000000000000	000000	00
Theory of	of latent fibra	itions		

Much of the theory of fibrations works for a latent fibration $p:\mathbb{E}\to\mathbb{B}!$

- The composite of two prone maps is again prone.
- Every map in 𝔅 factors as a subvertical map followed by a prone map (g is subvertical if p(g) is a restriction idempotent).
- More generally, factorization systems in $\mathbb B$ lift to factorization systems in $\mathbb E$ (though one has to define factorization systems in a restriction category first...)

Also:

- The composite of two latent fibrations is a latent fibration.
- The pullback of a latent fibration along any restriction functor is a latent fibration.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

	Restriction categories	Latent fibrations	Dual of a latent hyperfibration	Conclusion
		0000000000000		
Indexed	version			

While there is an indexed category version of latent fibrations, it is much more complicated.

- For a latent fibration p : E → B, we take the fibre over A to be objects over A and subvertical maps over A (the usual fibre will not work).
- This produces a pseudofunctor

$$P: \mathbb{B}^{op} \to \mathsf{SRest},$$

where SRest is the 2-category of restriction categories, semifunctors, and semifunctor transformations.

• Unfortunately, to go back from this to a latent fibration, we need more data ("bounding maps").

If $e : A \to A$ is a restriction idempotent in \mathbb{B} , then there may not be a prone restriction idempotent in \mathbb{E} over e!

- The latent fibration property guarantees *a* prone map over *e*, but it may not necessarily be a restriction idempotent.
- For example, in $\mathcal{O}(C)$, the prone lift of $e: A \to A$ over (A, e') is

$$(A, \overline{ee'}) \xrightarrow{e} (A, e')$$

which is no longer even an endomorphism!

- In fact, unless e' ≥ e, it is not possible to find any restriction idempotent over e to (A, e'), let alone a prone one.
- There is a similar problem with the domain latent fibration.

00	0000000	00000000000000	000000	00

Admissible latent fibrations

Definition

Say that a latent fibration $p : \mathbb{E} \to \mathbb{B}$ is **admissible** if for any restriction idempotent $e : A \to A$ in \mathbb{B} and any X in \mathbb{E} over A, there is a prone restriction idempotent $e^* : X \to X$ in \mathbb{E} over e.

- All the previous examples except the propositions example and the domain example are admissible.
- In general, the splitting of a latent fibration p is a latent fibration only if p is admissible.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Introduction 00	Restriction categories	Latent fibrations	Dual of a latent hyperfibration	Conclusion 00
Warning t	two: partials i	sos need not b	e prone	

In an (ordinary) fibration, every isomorphism is Cartesian. Unfortunately, in a latent fibration, every partial isomorphism need not be prone.

Definition

Say a latent fibration $p: \mathbb{E} \to \mathbb{B}$ is a **hyperfibration** if it is admissible and if every partial isomorphism in \mathbb{E} is prone.

- The lax versions of the simple and codomain fibrations are not hyperfibrations.
- The strict versions of the simple and codomain fibrations **are** hyperfibrations.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• The assemblies fibration is a hyperfibration.

	Restriction categories	Latent fibrations	Dual of a latent hyperfibration	Conclusion
00	0000000	00000000000000	000000	00
Hyperco	onnections			

Definition

(Cockett/Garner 2014) A restriction functor $F : \mathbb{E} \to \mathbb{B}$ is a **hyperconnection** if for each $X \in \mathbb{E}$, the restriction of F to the restriction idempotents $\mathcal{O}(X)$ of X is an isomorphism; that is,

 $F|_{\mathcal{O}(X)}: \mathcal{O}(X) \to \mathcal{O}(FX)$ is invertible.

For example, the codomain functor $\mathbb{C}^{\rightarrow} \rightarrow \mathbb{C}$ is a hyperconnection: if (e', e) is a restriction idempotent on $x : C \rightarrow C$:

then since the square commutes and is semi-precise,

$$e' = \overline{e'} = \overline{e'\overline{x}} = \overline{e'x} = \overline{xe},$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

so e' is entirely determined by e.

Introduction 00	Restriction categories	Latent fibrations	Dual of a latent hyperfibration	Conclusion 00
Hypercon	nections and	hyperfibrations		

Theorem

An admissible latent fibration $p: \mathbb{E} \to \mathbb{B}$ is a latent hyperfibration if and only if p is a hyperconnection.

- This shows why the simple strict latent fibration and the strict codomain fibration are hyperfibrations.
- Similarly, it can also be used to show that their lax versions are *not* latent hyperfibrations.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• As we shall see, we can build duals to latent hyperfibrations.

Our	of latant file	rations		
00	000000	000000000000	000000	00
Introduction	Restriction categories	Latent fibrations	Dual of a latent hyperfibration	Conclusion

Overview of latent fibratio

In summation:

- There is a restriction version of fibrations, with many examples, including some particular to restriction categories.
- Many results for fibrations hold for latent fibrations.
- There is an indexed version of latent fibrations, but it is complex.
- There are strengthenings of the notion of latent fibration which have useful properties.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction	Restriction categories	Latent fibrations	Dual of a latent hyperfibration	Conclusion
00	0000000	000000000000	00000	00
Idoa of	the dual fibra	tion		

Idea of the dual fibration

Following the idea for how to define the dual fibration, we would hope that given a latent fibration $p: \mathbb{E} \to \mathbb{B}$, we define the dual \mathbb{E}^* to have objects those of \mathbb{E} , arrows spans

(with v subvertical and c prone) and composition by (latent?) pullback

э

Introduction 00	Restriction categories	Latent fibrations	Dual of a latent hyperfibration ○●○○○○	Conclusion 00
Restrictio	n structure?			

But how can this be a restriction category? Given

its restriction $\overline{(v,c)}$ would have to be a span of the form

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

which doesn't affect the original span when composed with it. **Note**: $\overline{v} : C \to C$ not of the right type.

Destrict	ion etructure			
			000000	
Introduction	Restriction categories	Latent fibrations	Dual of a latent hyperfibration	Conclusion

Restriction structure

However, suppose $p:\mathbb{E}\to\mathbb{B}$ is a latent $\mathit{hyper}\!\!fibration.$ Then given a span

with v subvertical, p(v) is a restriction idempotent in $\mathbb B$

$$p(X) = p(S) \xrightarrow{p(v)} p(S) = p(X)$$

so since p is a hyperconnection, there is a corresponding unique restriction idempotent on X

$$X \xrightarrow{\hat{v}} X$$

so we can define $\overline{(v,c)}$ to be the span

Introduction	Restriction categories	Latent fibrations	Dual of a latent hyperfibration	Conclusion
00	000000	000000000000	000000	00
C	af a suburst			
Cospan	or a subvertic	ar/prone pair		

Moreover, hyperfibrations do have the necessary latent pullbacks:

Lemma

Suppose $p : \mathbb{E} \to \mathbb{B}$ is a latent hyperfibration. Then every cospan $c : B \to C$, $v : A \to C$ with v subvertical and c prone has a corresponding latent pullback:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

where w is subvertical and c' is prone.

Introduct		Restriction of	categories	Latent fib		Dual of a latent hyperfibration	Conclusion
00		0000000		000000	00000000	000000	00
_							

Dual of latent hyperfibration

Theorem

If $p: \mathbb{E} \to \mathbb{B}$ is a latent hyperfibration, then there is a latent hyperfibration $p^*: \mathbb{E}^* \to \mathbb{B}^*$ where

- \mathbb{E}^* has the same objects as \mathbb{E} ;
- arrows $(v, c) : X \rightarrow Y$ are equivalence classes of spans

with v subvertical and c prone (equivalence is up to vertical partial isomorphism);

- restriction is defined as above: $\overline{(v,c)} := (\hat{v},\hat{v});$
- composition is by latent pullback.

	Restriction categories	Latent fibrations	Dual of a latent hyperfibration	Conclusion
			000000	
Examples				

• The strict simple latent fibration is a hyperfibration, and so has a dual, with maps

$$(A,X) \xrightarrow{(f,f')} (B,Y)$$

of the form

$$A \xrightarrow{f} B, \ A \times Y \xrightarrow{f'} X$$
 such that $\overline{f'} = \overline{f} \times 1$

One could think of think of this as a "category of partial lenses".

 The strict codomain fibration is a hyperfibration, and so has a dual, which one could think of as a "category of partial dependent lenses".

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• The assemblies fibration is a hyperfibration, and so has a dual (though not sure of a good description of it yet).

Introduction 00	Restriction categories	Latent fibrations	Dual of a latent hyperfibration	Conclusion O
Concludir	ng thoughts			

We began this story simply trying to understand how the dual to the simple fibration worked in restriction categories. This has led to quite a journey, and there's still lots more to understand and do:

- Are categories of partial lenses practically useful? I imagine so, but this needs testing...
- Other examples of latent hyperfibrations and their duals?
- Need a better theoretical understanding of the indexed version of things (in particular, what is the indexed version of this dual?)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• How do latent fibrations relate to fibrations in the various 2-categories of restriction categories?

	Restriction categories	Latent fibrations	Dual of a latent hyperfibration	Conclusion		
00	000000	000000000000	000000	00		
References						

- Cockett, R. and Garner, R. Restriction categories as enriched categories. Theoretical computer science 523 (2014), pgs. 37–55.
- Cockett, R., Hofstra, P. and Guo, X. Range categories II: towards regularity. Theory and applications of categories 26 (2012), pgs. 453–500.
- Cockett, R. and Lack, S. Restriction categories I: categories of partial maps. Theoretical computer science 270 (2002), pgs. 223–259.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• Nester, C. Turing categories and realizability. PhD thesis.