Tangent	categories	Vector field

Vector fields, spaces, and bundles

Connections

Conclusions 00

Structures in tangent categories

Geoff Cruttwell Mount Allison University (joint work with Robin Cockett)

Category Theory 2014 Cambridge, UK, June 30th, 2014

Tangent categories ●000	Vector fields, spaces, and bundles	Connections 00000000	Conclusions
Outline			

- What are tangent categories?
 - Definitions: intuitive and more precise.
 - Examples.
 - What can one do within a tangent category?
 - Vector fields and their Lie bracket.
 - Vector spaces.
 - Vector bundles.
 - Differential forms.
 - Connections on a vector bundle.

Tangent categories 0●00 Vector fields, spaces, and bundles $_{\rm OOOOOO}$

Connections

Conclusions

Tangent categories (intuitively)

Definition (Rosický 1984, modified Cockett/Cruttwell 2013)

(Intuitively) A tangent category consists of a category X, which has, for each object M, an associated bundle over M, called TM, with the following properties:

- each TM is an additive bundle over M, in a natural way;
- each TM is a "vector" bundle over M, in a natural way;
- *T* "preserves the structure of each bundle *TM*" in a natural way.

Tangent categories 00●0 Vector fields, spaces, and bundles

Connections

Conclusions 00

Tangent categories (more precisely)

Definition

More specifically, this means we have a functor $T : \mathbb{X} \to \mathbb{X}$, with:

- (projection) a natural transformation $p: T \rightarrow I$;
- (addition and zeroes) natural transformations $+: T_2 \rightarrow T$ and $0: I \rightarrow T$;
- (vertical lift) a natural transformation $\ell: T \to T^2$ satisfying a certain universality property;
- (canonical flip) a natural transformation $c: T^2 \rightarrow T^2$;
- a number of coherence axioms.

Tangent categories	Vector fields, spaces, and bundles	Connections	Conclusions
000●		000000000	00
Tangent catego	ory examples		

- (i) The canonical example: finite dimensional smooth manifolds.
- (ii) Convenient manifolds (with the kinematic tangent bundle).
- (iii) Any Cartesian differential category.
- (*iv*) The infinitesimally linear objects in a model of synthetic differential geometry.
- (v) Commutative ri(n)gs and its opposite (and other associated categories in algebraic geometry).
- (vi) The category of C- ∞ rings.
- (vii) (Lack/Leung) A category of Weyl algebras.
- (viii) (Rosický) If $\mathbb X$ has tangent structure, then so does each slice $\mathbb X/M.$

Tangent categories

Vector fields, spaces, and bundles

Connections

Conclusions

Vector fields and their Lie bracket

Definition

If (\mathbb{X}, T) is a tangent category with an object $M \in \mathbb{X}$, a vector field on M is a map $M \xrightarrow{v} TM$ with pv = 1.

If \mathbb{X} has negation, given two vector fields $v_1, v_2 : M \to TM$, Rosický showed how to use the universal property of vertical lift to define the Lie bracket vector field $[v_1, v_2] : M \to TM$ so that the Jacobi identity

$$[v_1, [v_2, v_3] + [v_3, [v_1, v_2]] + [v_2, [v_3, v_1]] = 0$$

is satisfied.

Tangent	categories

Vector fields, spaces, and bundles

Connections

Conclusions

Vector Spaces/Differential objects

Vector spaces in tangent categories are represented by objects whose tangent bundle is trivial:

Definition

A differential object in a tangent category consists of a commutative monoid (A, σ, ζ) with a map $\hat{p} : TA \to A$ such that

$$A \xleftarrow{\hat{p}} TA \xrightarrow{p} A$$

is a product diagram, so that $TA \cong A \times A$ (as well as some additional coherence axioms).

- \mathbb{R}^{n} 's in the category of smooth manifolds.
- The pullback of $p: TM \rightarrow M$ along a point of M.
- If *T* is representable with representing object *D*, get an associated ring *R* which is differential (thus satisfying the "Kock-lawvere" axiom).

Tangent categories

Vector fields, spaces, and bundles 000000

Connections 000000000 Conclusions 00

Vector/Differential bundles (intuition)

In general:

- a group bundle is a group in \mathbb{X}/M ;
- a vector bundle is a vector space in \mathbb{X}/M ;
- so a differential bundle should be a differential object in the canonical tangent category structure on X/M.

Tangent categories	Vector fields, spaces, and bunc	lles Conne	ections	Conclusions
0000		0000	000000	00
Vector/Different	ial bundles (m	ore precisely	·)	

Definition

A **differential bundle** in a tangent category consists of an additive bundle $q: E \to M$ with a map $\lambda: E \to TE$ so that $q: E \to M$ becomes a differential object in the slice tangent category \mathbb{X}/M .

- (i) If A is a differential object, then for each object M, $\pi_2: A \times M \longrightarrow M$ is a differential bundle.
- (ii) For each object M, $p: TM \rightarrow M$ is a differential bundle.
- (iii) The pullback of a differential bundle $q: E \to M$ along any map $f: X \to M$ is a differential bundle.
- (iv) If $q: E \to M$ is a differential bundle, $T(q): TE \to TM$ is also.

Tangent categories	Vector fields, spaces, and bundles	Connections	Conclusions
0000	0000€0	00000000	
Linear maps bet	ween differential bundle	es	

- A morphism of differential bundles between differential bundles (q : E → M), (q' : E' → M') is simply a pair of maps f : E → E', g : M → M' making the obvious diagram commute.
- A morphism of differential bundles (f, g) is **linear** if it also preserves the lift, that is,

commutes.

Note: this does correspond to the ordinary definition of linear morphisms between vector bundles in the canonical example.

Tangent categories

Vector fields, spaces, and bundles

Connections

Conclusions

(Vector-valued) Differential forms

Definition

If *M* is an object of X and $q : E \to M$ a differential bundle, a *E*-valued differential *n*-form on *M* consists of a map

$$\omega: T_n M \to E$$

which is "linear in each variable" and alternating.

In the case when the differential bundle is of the form $\pi_2 : A \times M \to M$ for some differential object A, these are ordinary differential forms - in particular in the canonical example, when $A = \mathbb{R}$.

Tangent categories	Vector fields, spaces, and bundles	Connections	Conclusions
0000		•00000000	00
Connections (in	tuitively)		

Intuitive idea: can "move tangent vectors between different tangent spaces". Moving a tangent vector around a closed curve measures the "curvature" of the space. Connections have been expressed in many different ways:

- as a "horizontal subspace";
- as a "connection map";
- as a notion of "parallel tranport";
- as a "covariant derivative".

Quoting Michael Spivak:

"I personally feel that the next person to propose a new definition of a connection should be summarily executed."

Tangent categories	Vector fields, spaces, and bundles	Connections	Conclusions
0000		o●ooooooo	00
Two fundament	al maps		

A differential bundle has two key maps involving *TE* whose composite is the zero map:

Tangent categories	Vector fields, spaces, and bundles	Connections 00000000	Conclusions
Horizontal lift			

A connection consists of a linear section of *H* of $\langle Tq, p \rangle$ called the **horizontal lift**...

Tangent categories	Vector fields, spaces, and bundles	Connections 000000000	Conclusions
Connector			

which in addition has a linear retraction K of λ called the **connector**:

Tangent categories	Vector fields, spaces, and bundles	Connections 000000000	Conclusions 00
Connection defi	nition		

that satisfies the equations KH = 0 and $(\lambda K \oplus 0p) + H \langle Tq, p \rangle = 1_{TE}$.

Tangent categories	Vector fields, spaces, and bundles	Connections	Conclusions
0000		000000000	00
Simple example			

Any differential object A is a differential bundle over 1 and these have a canonical connection given by:

• $K: TA \rightarrow A$ by K(v, a) := v and

•
$$H: A \rightarrow TA$$
 by $H(a) := (0, a)$.

Tangent categories	Vector fields, spaces, and bundles	Connections 000000000	Conclusions 00
K from H and y	vice versa		

Suppose (X, T) is a tangent category with negation and (q, λ) is a differential bundle.

Proposition

If H is a linear section of $\langle T(q), p \rangle$, then q can be given the structure of a connection with horizontal lift H.

Proposition

If K is a linear retract of λ , and q has at least one section J of $\langle T(q), p \rangle$, then q can be given the structure of a connection with connector K.

Tangent categories	Vector fields, spaces, and bundles	Connections 000000000	Conclusions 00
Flat connection	S		

The definition of a connection being flat in the literature is quite complicated, but by using the map c we can make a very simple definition:

Definition

Say that a connection is **flat** if cT(K)K = T(K)K.

One can show this is equivalent to the standard definition (involving curvature) in the canonical example.

Tangent categories	Vector fields, spaces, and bundles	Connections	Conclusions
0000		00000000	00
Affine and torsic	on-free connections		

Torsion-free connections are connections on the tangent bundle for which the movement of tangent vectors does not "twist". Again there is a simple definition of this in our setting:

Definition

When the connection is on a tangent bundle $p: TM \rightarrow M$, the connection is called **affine**. Say an affine connection is **torsion-free** if cK = K.

This again is again equivalent to the usual definition (involving the Lie bracket) in the canonical example.

Tangent categories	Vector fields, spaces, and bundles	Connections	Conclusions
0000		000000000	●0
Conclusions			

- Most categories related to differential or algebraic geometry are tangent categories.
- The following are well-defined notions in any tangent category: vector fields, the Lie bracket, "vector" spaces and bundles, differential forms, and connections.
- The definitions of differential object and bundle shed light on the nature of vector spaces and bundles in differential geometry.
- The definition of connections, as well as their properties of being torsion-free and affine, shed light on connections in differential geometry.

Tangent categories	Vector fields, spaces, and bundles	Connections 000000000	Conclusions 00
References			

References:

- Cockett, R. and Cruttwell, G. Differential structure, tangent structure, and SDG. *Applied Categorical Structures*, Vol. 22 (2), pg. 331–417, 2014.
- Rosický, J. Abstract tangent functors. *Diagrammes*, 12, Exp. No. 3, 1984.