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Overview

Tangent categories provide an abstract framework to develop many
concepts in differential geometry.

Many key concepts and results from differential geometry have
already been developed in this framework (Lie bracket, vector
bundles, connections). But differential forms and de Rham
cohomology have proven elusive.

In this talk we’ll look at variants of the notion of differential form in
tangent categories.

In particular, we’ll look at sector forms, and show that they have
very rich structure. Our results about this structure appear to be
new, even in ordinary differential geometry.

From the sector forms, we’ll get a definition of de Rham cohomology
in a tangent category as a simple corollary.
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Tangent category definition

Definition (Rosický 1984, modified Cockett/Cruttwell 2013)

A tangent category consists of a category X with:

an endofunctor T : X −→ X;

a natural transformation p : T −→ 1X;

for each M, the pullback of n copies of pM : TM −→ M along itself
exists (and is preserved by each Tm), call this pullback TnM;

for each M ∈ X, pM : TM −→ M has the structure of a commutative
monoid in the slice category X/M, in particular there are natural
transformations + : T2 −→ T , 0 : 1X −→ T ;

(TM represents the “tangent bundle” of an object M.)
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Tangent category definition (continued)

Definition

(canonical flip) there is a natural transformation c : T 2 −→ T 2 which
preserves additive bundle structure and satisfies c2 = 1;

(vertical lift) there is a natural transformation ` : T −→ T 2 which
preserves additive bundle structure and satisfies `c = `;

various other coherence equations for ` and c ;

(universality of vertical lift) “an element of T 2M which has
T (p) = 0 is uniquely given by an element of T2M”.
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Examples

(i) Finite dimensional smooth manifolds with the usual tangent bundle.

(ii) Convenient manifolds with the kinematic tangent bundle.

(iii) Any Cartesian differential category (includes all Fermat theories by a
result of MacAdam).

(iv) The infinitesimally linear objects in a model of synthetic differential
geometry (SDG).

(v) Commutative ri(n)gs and its opposite, as well as various other
categories in algebraic geometry.

(vi) The category of C∞-rings.

Note: Building on work of Leung, Garner has shown how tangent
categories are a type of enriched category.
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Differential objects

Definition

A differential object in a tangent category consists of a commutative
monoid E with a map p̂ : TE −→ E such that

E
p̂←−− TE

pE−−→ E

is a product diagram, and such that p̂ satisfies various coherences with
the tangent structure.

Examples:

Rn’s in the category of smooth manifolds.

Convenient vector spaces in the category of convenient manifolds.

Euclidean R-modules in models of SDG.
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Differential objects II

Differential objects also have a map

λ : E −→ TE

which will be useful when defining “linear” maps to these objects.

If E is a differential object, any map

X
f−−→ E

has an associated “derivative” D(f ) : TX −→ E given by

TX
Tf−−→ TE

p̂−−→ E
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Classical differential forms

The classical notion of differential n-form on a smooth manifold M
is a smooth map

TnM
ω−−→ R

which is multilinear and alternating (switching two of the inputs
gives the negative).

In a tangent category, we have the objects TnM, can replace R with
a differential object E , and give a suitable definition of multilinear
and alternating to get “classical” differential forms as multilinear
alternating maps

TnM
ω−−→ E
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Derivatives of classical differential forms

But the exterior derivative of a classical form ω is problematic.

Classically, the exterior derivative is defined locally (not possible in
an arbitrary tangent category!) by an alternating sum of various
derivatives of ω.

In a tangent category, if we have a classical form

Tn(M)
ω−−→ E

then its derivative is

T (TnM)
D(ω)−−−−→ E

which is not the right type.

An arbitrary M does not have a canonical choice of map

Tn+1(M) −→ T (Tn(M))

to get a classical (n + 1)-form.
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Singular forms

In SDG, one instead considers singular forms: maps

T n(M)
ω−−→ E

suitably multilinear and alternating.

In smooth manifolds, giving such a map is equivalent to giving a
classical form (!).

One can similarly define singular forms in tangent categories,and
define an appropriate exterior derivative for such singular forms in a
tangent category, as the derivative of ω

T n+1(M)
D(ω)−−−−→ E

has the correct type (the exterior derivative is then defined as an
alternating sum of permutations of this derivative).
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Sector forms

When calculating with singular forms, it becomes natural to consider
maps

T n(M)
ω−−→ E

which are merely multilinear (not necessarily alternating).

These are known as “sector forms”, and have been investigated only
briefly in differential geometry in a book by J.E. White.

These will be the main object of interest for us.
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Comparison of forms

For comparison:

Tn(M): n (first-order) tangent vectors on M.

T n(M): nth order tangent vector on M.

There is a canonical map T n(M) −→ Tn(M).

Thus sector forms generalize classical forms, singular forms, and
covariant tensors:

alternating not alternating
domain Tn differential form covariant tensor
domain T n singular form sector form
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Definition of sector forms in a tangent category

Definition

A sector n-form on M with values in E is a morphism ω : T nM → E
such that for each i ∈ {1, ..., n}, ω is linear in the ith variable; that is,
the following diagram commutes:

T nM

ani
��

ω // E

λ

��
T n+1M

T (ω)
// TE

(where an1 = `, an2 = cT (`), an3 = cT (c)T 2(`), etc.)

The set of sector n forms on M with values in E will be denoted by
Ψn(M; E ); we will often abbreviate this to Ψn(M).
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Fundamental derivative of a sector form

There is an operation

δ1 : Ψn(M) −→ Ψn+1(M)

given by sending a sector n-form

ω : T nM −→ E

to the sector (n + 1)-form

D(ω) : T n+1M −→ E

Note: even if ω is alternating, δ1(ω) := D(ω) need not be.

But there are actually n other related “derivatives”...
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Symmetry operations

For any n ≥ 2, pre-composing a sector n-form ω with the canonical
flip again gives an n-form:

T nM
cTn−2M−−−−−→ T nM

ω−−→ E

giving an operation
σ1 : ΨnM −→ ΨnM

And for higher n, pre-composing with T (cT n−3M),T 2(cT n−4M), etc.
gives n − 1 different symmetry operations

σ1, σ2, . . . σn−1 : ΨnM −→ ΨnM
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Derivative/coface operations

By post-composing the fundamental derivative

δ1 : Ψn(M) −→ Ψn+1(M)

with the first symmetry

σ1 : Ψn+1(M) −→ Ψn+1(M)

we get a new “derivative”

δ2 : Ψn(M) −→ Ψn+1(M)

Post-composing this with σ2 gives δ3, then δ4, etc...continuing in
this way we get (n + 1) total ways to get an (n + 1)-form from an
n-form, notated as

δ1, δ2, δ3, . . . δn+1 : ΨnM −→ Ψn+1M

which we refer to as the co-face operations.
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Codegeneracy operations

For a sector n-form ω : T nM −→ E , pre-composing with the lift `
gives an (n − 1)-form:

T n−1M
`Tn−2M−−−−−→ T nM

ω−−→ E

giving an operation

ε1 : ΨnM −→ Ψn−1M

Similarly, for higher n, pre-composing with T (`T n−3M),T 2(`T n−4M),
etc. gives n − 1 different codegeneracy operations

ε1, ε2, . . . , εn−1 : ΨnM −→ Ψn−1M
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Symmetric cosimpicial objects

Definition (Grandis/Barr)

An (augmented) symmetric cosimpicial object in a category X consists
of a sequence of objects

C0,C1,C2, . . . ,Cn, . . .

with, for each n, maps

δni : Cn −→ Cn+1 for each i = 1 . . . n + 1; (Cofaces)

εni : Cn −→ Cn−1 for each i = 1 . . . n − 1; (Codegeneracies)

σn
i : Cn −→ Cn for each i = 1 . . . n − 1 (Symmetries)

satisfying 15 equations relating these maps, for example, for i < j ,

εjδi = δiεj−1.

Such an object is equivalent to giving a functor

C : finCard −→ X.
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Main result

Theorem

Let X be a tangent category with a differential object E .

Each object M has an associated symmetric cosimpicial monoid
Ψ(M), where Ψn(M) is the set of of sector n-forms, and cofaces,
codegeneracies, and symmetries are as described previously.

This assignment is contravariantly functorial.

Corollary

For each function f : n −→ m between finite cardinals there is an
associated map between sector forms

Ψf : Ψn(M) −→ Ψm(M).

These appear to be new results in the category of smooth manifolds.
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Corollary: Cochain complex of sector forms

Now suppose that the differential object E is “subtractive”; that is,
it’s underlying monoid is in fact a group.

In this case, each Ψ(M) is actually a symmetric cosimpicial group.

Any cosimpicial group Ψ has an associated map δn : Ψn −→ Ψn+1

given by

∂n(ω) :=
n+1∑
i=1

(−1)i−1δni (ω)

which has the property that δn+1(δn(ω)) = 0.

Corollary

If E is subtractive, each Ψ(M; E ) can be given the structure of a cochain
complex.

This also appears to be a new result for smooth manifolds.
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Corollary: Cochain complex of singular forms

Recall that singular forms are alternating sector forms.

It is easy to show that the above operation ∂ restricts to singular
forms.

Corollary

If E is subtractive, the singular forms on M with values in E have the
structure of a cochain complex.

In the category of smooth manifolds, this cochain complex is the de
Rham complex.
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Conclusions

Sector forms in tangent categories have a very rich structure which
has not previously been fully described, even in the canonical
category of smooth manifolds.

As a consequence, tangent categories support a notion of
generalization of de Rham cohomology (and in fact possess a
possibly distinct cohomology of sector forms).

(J. E. White) If g : T2M −→ R is a Pseudo-Riemannian metric on M
(in particular, a covariant 2-tensor) quantities like the cycle

δ1g + δ2g − δ3g ,

and balance
δ1g − δ2g

of g are sector forms which are not themselves tensors; thus general
results about sector forms may further understanding of such
invariants.
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