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Overview

Up to now, only the differential side of differential geometry has
been developed for tangent categories.

One aspect of the integral side of differential geometry are integral
curves, i.e., solutions to differential equations.

In this talk, we’ll see how to discuss differential equations and their
solutions in a tangent category: this involves assuming an object
whose existence has formal similarities to that of a (parametrized)
natural number object.

To gain a complete understanding of solutions to differential
equations, we will need to move to the more general setting of
tangent restriction categories.
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Tangent category definition

Definition (Rosický 1984, modified Cockett/Cruttwell 2013)

A tangent category consists of a category X with:

tangent bundle functor: an endofunctor T : X −→ X;

projection of tangent vectors: a natural transformation
p : T −→ 1X;

for each M, the pullback of n copies of pM along itself exists (and is
preserved by each Tm), call this pullback TnM;

addition and zero tangent vectors: for each M ∈ X, pM has the
structure of a commutative monoid in the slice category X/M; in
particular there are natural transformations + : T2 −→ T ,
0 : 1X −→ T ;
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Tangent category definition (continued)

Definition

symmetry of mixed partial derivatives: a natural transformation
c : T 2 −→ T 2;

linearity of the derivative: a natural transformation ` : T −→ T 2;

the vertical bundle of the tangent bundle is trivial:

T2(M)

π0pM=π1pM

��

〈π0`,π10TM〉T (+) // T 2(M)

T (pM )

��
M

0M

// T (M)

is a pullback;

various coherence equations for ` and c .

X is a Cartesian tangent category if X has products and T preserves
them.
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Examples

(i) Finite dimensional smooth manifolds with the usual tangent bundle.

(ii) Convenient manifolds with the kinematic tangent bundle.

(iii) Any Cartesian differential category (includes all Fermat theories by a
result of MacAdam, and Abelian functor calculus by a result of
Bauer et. al.).

(iv) The microlinear objects in a model of synthetic differential geometry
(SDG).

(v) Commutative ri(n)gs and its opposite, as well as various other
categories in algebraic geometry.

(vi) The category of C∞-rings.

(vii) With additional pullback assumptions, tangent categories are closed
under slicing.

Note: Building on work of Leung, Garner has shown how tangent
categories are a type of enriched category.
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Vector fields

Solving a differential equation is about turning a vector field into an
integral curve, or, more generally, a flow.

Definition

A vector field on an object M is a section of the tangent bundle of M;
that is, a map F : M −→ TM such that FpM = 1M .
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Dynamical systems

Definition

A (parametrized) dynamical system on an object M consists of a vector
field F : M −→ TM and an “initial condition”, i.e., a map g : X −→ M.
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Total curve objects

Definition

A total curve object in a Cartesian tangent category consists of a
dynamical system

1
c0−−→ C

c1−−→ TC

which is initial in the following sense: for any other parametrized
dynamical system g : X −→ M,F : M −→ TM, there is a unique map (the
“solution”) γ : C × X −→ M such that

X
〈!c0,1〉//

g
""E

EE
EE

EE
EE

C × X

γ

��

c1×0 // T (C × X )

T (γ)

��
M

F
// TM

Think of c0 as “unit time” and c1 as “unit speed”.
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Differential equations and curve object solutions

For example, take C = R with c0 = 0 and c1(x) = 〈1, x〉.
Let F be a vector field on M = R, so that F (x) = 〈f (x), x〉 for some
smooth map f : R −→ R, and z : {?} −→ R a point of R.

Then a solution γ as in the previous slide consists of a smooth map
γ : R −→ R such that

γ(0) = z and γ′(t) = f (γ(t)).

In other words, to find such a γ one needs to solve the above
(first-order, ordinary) differential equation.
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Total curve objects: too restrictive

Example

In a model of SDG, D∞ (the nilopotents of the ring object) is a total
curve object (Kock/Reyes).

But in a sense, these are “idealized” solutions: they only exist for an
infinitesimal amount of time!

For practical purposes, it is useful to understand how solutions work
for some actual amount of time...

R is not a total curve object in smooth manifolds:

solutions might “go off the edge”;
solutions might “blow up”.

There is an existence and uniqueness theorem for differential
equations, but solutions need only be partially defined!
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Restriction categories

Restriction categories are a formalization of categories of partial maps
due to Cockett and Lack:

Definition

A restriction category consists of a category X, together with an
operation which takes a map f : A −→ B and produces a map f : A −→ A
such that for f : A −→ B, g : A −→ C , h : B −→ D,

1 f f = f ;

2 f g = g f ;

3 g f = g f ;

4 f h = fh f .

f is an idempotent which gives the “domain of definition of f ”.

Say that f is total if f = 1.
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Tangent restriction categories

Definition

A tangent restriction category consists of a restriction category X with
structure similar to that of a tangent category, and such that:

T : X −→ X preserves restrictions;

all pullbacks are restriction pullbacks;

the structural natural transformations (p,+, 0, `, c) are all total.
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Partial solutions

We only expect that partial solutions need exist.

In smooth manifolds, uniqueness can only be achieved on certain
special types of “flow domains”.

There are different ways of handling this axiomatically, but the way
I’ll discuss here directly axiomatizes the existence of such domains.
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Curve object definition

Definition

A curve object in a restriction tangent category consists of a total
dynamical system

1
c0−−→ C

c1−−→ TC

and, for each object X and restriction idempotent e = e on X , a
collection of restriction idempotents called definite domains:

De(X ) ⊆ {d = d : C × X −→ C × X , d ≤ 1× e}

such that:

De(X ) contains 1× e and is closed to intersections;

for all d ∈ De(X ), 〈!c0, e〉d = 〈!c0, e〉;
for all d ∈ De(X ) and f : Y −→ X , (1× f )d ∈ Df (Y );
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Curve object definition continued

Definition

(existence of solutions): every dynamical system (F , g) has a
solution;

(uniqueness of definite solutions): if γ and γ′ are definite solutions
to (F , g) then γ = γ′ implies γ = γ′;

(density of definite solutions): for any solution α of a system (F , g)
there is a definite solution γ of (F , g) such that γ ≤ α;

(total linear solutions) if F is a linear vector field then any system
(F , g) has a total solution.

If X has joins and each De(X ) is closed under them, then each system
has a unique maximum definite solution.
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Curve object examples

Example

Any tangent category with a total curve object.

Example

R in the category of smooth manifolds.

Example

R in the category of Banach manifolds.

R is not a curve object in the category of convenient manifolds.
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Curve object theory

With a curve object C , a number of standard results from differential
geometry can be derived:

If there is a total solution to (c1, 1):

C
〈!c0,1〉//

1
""E

EE
EE

EE
EE

C × C

��

c1×0 // T (C × C )

��
C

c1

// TC

(call this solution +) then (C ,+, c0) is a commutative monoid.

If γ is a definite flow of a vector field F : M −→ TM (i.e., a solution
to (F , 1) then there is a definite domain d on which

(+× 1)γ = (1× γ)γ.

The flows of two vector fields “commute” if and only if they Lie
bracket of their corresponding vector fields is 0.
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Curve object theory continued

With a curve object C :

Higher-order ordinary differential equations can be defined (they
are certain vector fields on T nM, ie., maps T n−1M −→ T nM) and
their solutions exist.

Connections have a corresponding notion of parallel transport:
given a connection on a bundle q : E −→ M, any curve in M has a
unique lift to a curve in E which stays “parallel” relative to the
connection.

Each connection on a tangent bundle has an associated notion of
geodesic: given a tangent vector at a point, the particle traces out
a path of “zero acceleration” (with “acceleration” relative to the
connection).
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Conclusions

In conclusion:

The existence of solutions to differential equations can be
formulated in tangent categories.

The formulation is akin to adding a natural numbers object to a
category.

Many important results of differential geometry follow as a result of
the assumption of such an object.

The results allow one to simultaneously develop ideas for
“infintesimal” solutions (as in SDG) and “actual” solutions (as in
smooth finite-dimensional or Banach manifolds).
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Future work

More work still to be done:

More examples would be useful.

Potential for further development of the theory (e.g. Frobenius’
theorem).

Development of other ways of handling uniqueness in the partial
setting (unique “germinal” solutions).

Partial differential equations is a whole other area that needs further
exploration in this setting.
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