	Differential equations a	
0000	00000	

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Differential equations in tangent categories

Geoff Cruttwell Mount Allison University (joint work with Robin Cockett and Rory Lucyshyn-Wright)

> Category Theory 2017 Vancouver, Canada, July 19, 2017

Introduction	Differential equations and total curve objects	Restriction tangent categories and curve objects	Conclusions
0000	00000	0000000	000
Overview			

- Up to now, only the *differential* side of differential geometry has been developed for tangent categories.
- One aspect of the *integral* side of differential geometry are integral curves, i.e., solutions to differential equations.
- In this talk, we'll see how to discuss differential equations and their solutions in a tangent category: this involves assuming an object whose existence has formal similarities to that of a (parametrized) natural number object.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• To gain a complete understanding of solutions to differential equations, we will need to move to the more general setting of tangent *restriction* categories.

duction	Differential			objec
0	00000			

Intro

Restriction tangent categories and curve objects

Tangent category definition

Definition (Rosický 1984, modified Cockett/Cruttwell 2013)

A tangent category consists of a category $\ensuremath{\mathbb{X}}$ with:

- tangent bundle functor: an endofunctor $T : \mathbb{X} \to \mathbb{X}$;
- projection of tangent vectors: a natural transformation $p: T \rightarrow 1_{\mathbb{X}}$;
- for each M, the pullback of n copies of p_M along itself exists (and is preserved by each T^m), call this pullback $T_n M$;
- addition and zero tangent vectors: for each M ∈ X, p_M has the structure of a commutative monoid in the slice category X/M; in particular there are natural transformations + : T₂ → T, 0 : 1_X → T;

ntroduction	Differential			objec
0000	00000			

Conclusions 000

Tangent category definition (continued)

Definition

- symmetry of mixed partial derivatives: a natural transformation $c: T^2 \rightarrow T^2$;
- linearity of the derivative: a natural transformation $\ell: T \to T^2$;
- the vertical bundle of the tangent bundle is trivial:

is a pullback;

• various coherence equations for ℓ and c.

X is a **Cartesian tangent category** if X has products and T preserves them.

Introduction	Differential equations and total curve objects	Restriction tangent categories and curve objects	Conclusions
0000	00000	00000000	000
Examples			

- (i) Finite dimensional smooth manifolds with the usual tangent bundle.
- (ii) Convenient manifolds with the kinematic tangent bundle.
- (iii) Any Cartesian differential category (includes all Fermat theories by a result of MacAdam, and Abelian functor calculus by a result of Bauer et. al.).
- *(iv)* The microlinear objects in a model of synthetic differential geometry (SDG).
- (v) Commutative ri(n)gs and its opposite, as well as various other categories in algebraic geometry.
- (vi) The category of C^{∞} -rings.
- (vii) With additional pullback assumptions, tangent categories are closed under slicing.

Note: Building on work of Leung, Garner has shown how tangent categories are a type of enriched category.

	Differential equations and total curve objects
0000	●0000

Solving a differential equation is about turning a vector field into an *integral curve*, or, more generally, a *flow*.

Definition

Vector fields

A vector field on an object M is a section of the tangent bundle of M; that is, a map $F: M \to TM$ such that $Fp_M = 1_M$.

Introduction	

Differential equations and total curve objects

Restriction tangent categories and curve object 00000000 Conclusions 000

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Dynamical systems

Definition

A (parametrized) **dynamical system** on an object *M* consists of a vector field $F: M \to TM$ and an "initial condition", i.e., a map $g: X \to M$.

Introdu	

Differential equations and total curve objects 00000

Restriction tangent categories and curve object 00000000 Conclusions 000

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Total curve objects

Definition

A **total curve object** in a Cartesian tangent category consists of a dynamical system

$$1 \xrightarrow{c_0} C \xrightarrow{c_1} TC$$

which is initial in the following sense: for any other parametrized dynamical system $g: X \to M, F: M \to TM$, there is a unique map (the "solution") $\gamma: C \times X \to M$ such that

Think of c_0 as "unit time" and c_1 as "unit speed".

Differential	equations	and	total	cu
00000				

Differential equations and curve object solutions

ve objects

- For example, take $C = \mathbb{R}$ with $c_0 = 0$ and $c_1(x) = \langle 1, x \rangle$.
- Let F be a vector field on M = ℝ, so that F(x) = ⟨f(x), x⟩ for some smooth map f : ℝ → ℝ, and z : {*} → ℝ a point of ℝ.
- Then a solution γ as in the previous slide consists of a smooth map $\gamma:\mathbb{R}\to\mathbb{R}$ such that

$$\gamma(0) = z$$
 and $\gamma'(t) = f(\gamma(t))$.

• In other words, to find such a γ one needs to solve the above (first-order, ordinary) differential equation.

Total curve objects: too restrictive

Example

In a model of SDG, D_∞ (the nilopotents of the ring object) is a total curve object (Kock/Reyes).

- But in a sense, these are "idealized" solutions: they only exist for an infinitesimal amount of time!
- For practical purposes, it is useful to understand how solutions work for some actual amount of time...
- \mathbb{R} is *not* a total curve object in smooth manifolds:
 - solutions might "go off the edge";
 - solutions might "blow up".
- There is an existence and uniqueness theorem for differential equations, but solutions need only be partially defined!

Introduc	

ifferential equations and total curve objects

Restriction tangent categories and curve objects ••••••••

Restriction categories

Restriction categories are a formalization of categories of partial maps due to Cockett and Lack:

Definition

A **restriction category** consists of a category \mathbb{X} , together with an operation which takes a map $f : A \to B$ and produces a map $\overline{f} : A \to A$ such that for $f : A \to B$, $g : A \to C$, $h : B \to D$,

- $\ \, \bullet \ \, \overline{f} \ f = f;$
- $\ \, \bigcirc \ \, \overline{f} \, \overline{g} \ = \overline{g} \, \overline{f} ;$
- $\ \, \overline{\overline{g} f} = \overline{g} \overline{f} ;$
- $\ \, \bullet \ \, f\overline{h} = \overline{fh} f.$
 - \overline{f} is an idempotent which gives the "domain of definition of f".
 - Say that f is **total** if $\overline{f} = 1$.

Differential		

Conclusions 000

Tangent restriction categories

Definition

A **tangent restriction category** consists of a restriction category X with structure similar to that of a tangent category, and such that:

- $T : \mathbb{X} \to \mathbb{X}$ preserves restrictions;
- all pullbacks are restriction pullbacks;
- the structural natural transformations $(p, +, 0, \ell, c)$ are all total.

	Differential equations	and		object
0000	00000			

Partial solutions

- We only expect that partial solutions need exist.
- In smooth manifolds, uniqueness can only be achieved on certain special types of "flow domains".
- There are different ways of handling this axiomatically, but the way I'll discuss here directly axiomatizes the existence of such domains.

Introduction	

Differential equations and total curve objects

Restriction tangent categories and curve objects 00000000

Conclusions 000

Curve object definition

Definition

A **curve object** in a restriction tangent category consists of a total dynamical system

$$1 \xrightarrow{c_0} C \xrightarrow{c_1} TC$$

and, for each object X and restriction idempotent $e = \overline{e}$ on X, a collection of restriction idempotents called *definite domains*:

$$\mathcal{D}_e(X) \subseteq \{d = \overline{d} : C \times X \to C \times X, d \leq 1 \times e\}$$

such that:

- $\mathcal{D}_e(X)$ contains $1 \times e$ and is closed to intersections;
- for all $d \in \mathcal{D}_e(X)$, $\langle !c_0, e \rangle d = \langle !c_0, e \rangle$;
- for all $d \in \mathcal{D}_e(X)$ and $f: Y \to X$, $\overline{(1 \times f)d} \in \mathcal{D}_{\overline{f}}(Y)$;

Differential			

Curve object definition continued

Definition

- (existence of solutions): every dynamical system (*F*, *g*) has a solution;
- (uniqueness of definite solutions): if γ and γ' are definite solutions to (F, g) then γ̄ = γ̄' implies γ = γ';
- (density of definite solutions): for any solution α of a system (F,g) there is a definite solution γ of (F,g) such that γ ≤ α;
- (total linear solutions) if F is a linear vector field then any system (F,g) has a total solution.

If X has joins and each $\mathcal{D}_e(X)$ is closed under them, then each system has a unique **maximum** definite solution.

	Differential equations and
0000	00000

Conclusions 000

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Curve object examples

Example

Any tangent category with a total curve object.

Example

 $\ensuremath{\mathbb{R}}$ in the category of smooth manifolds.

Example

 ${\mathbb R}$ in the category of Banach manifolds.

 $\mathbb R$ is *not* a curve object in the category of convenient manifolds.

0000	00000	0000000	000
Curve ob	ect theory		

With a curve object C, a number of standard results from differential geometry can be derived:

• If there is a total solution to $(c_1, 1)$:

(call this solution +) then $(C, +, c_0)$ is a commutative monoid.

If γ is a definite *flow* of a vector field F : M → TM (i.e., a solution to (F, 1) then there is a definite domain d on which

$$(+ \times 1)\gamma = (1 \times \gamma)\gamma.$$

• The flows of two vector fields "commute" if and only if they Lie bracket of their corresponding vector fields is 0.

Differential			objects

Curve object theory continued

With a curve object C:

- Higher-order ordinary differential equations can be defined (they are certain vector fields on T^nM , i.e., maps $T^{n-1}M \to T^nM$) and their solutions exist.
- Connections have a corresponding notion of parallel transport: given a connection on a bundle q : E → M, any curve in M has a unique lift to a curve in E which stays "parallel" relative to the connection.
- Each connection on a tangent bundle has an associated notion of **geodesic**: given a tangent vector at a point, the particle traces out a path of "zero acceleration" (with "acceleration" relative to the connection).

	Differential equations and total curve ob
0000	00000

Conclusions

In conclusion:

- The existence of solutions to differential equations can be formulated in tangent categories.
- The formulation is akin to adding a natural numbers object to a category.
- Many important results of differential geometry follow as a result of the assumption of such an object.
- The results allow one to simultaneously develop ideas for "infintesimal" solutions (as in SDG) and "actual" solutions (as in smooth finite-dimensional or Banach manifolds).

	Differential equations and total curve objects	Restriction tangent categories and curve objects	Conclusion
0000	00000	0000000	000
Future w	vork		

More work still to be done:

- More examples would be useful.
- Potential for further development of the theory (e.g. Frobenius' theorem).
- Development of other ways of handling uniqueness in the partial setting (unique "germinal" solutions).
- Partial differential equations is a whole other area that needs further exploration in this setting.

Introduction 0000	Differential equations and total curve objects	Restriction tangent categories and curve objects	Conclusions 00●
Reference	es		

- Cockett, R. and Cruttwell, G. Differential structure, tangent structure, and SDG. *Applied Categorical Structures*, Vol. 22 (2), pg. 331–417, 2014.
- Cockett, R. and Cruttwell, G. **Connections in tangent categories**. Submitted, available at arXiv:1610.08774.
- Kock, A. and Reyes, G. Ordinary differential equations and their exponentials. *Central European Journal of Mathematics*, Vol. 4 (1), pg. 64–81, 2006.
- Rosický, J. Abstract tangent functors. *Diagrammes*, 12, Exp. No. 3, 1984.