Introduction	Vector fields and their Lie bracket	Graphical language	Second notation	Conclusions

The Jacobi identity for tangent categories

Geoff Cruttwell Mount Allison University (joint work with Robin Cockett)

Category Theory 2015 Aveiro, Portugal, June 19th, 2015

Introduction	Vector fields and their Lie bracket	Graphical language	Second notation	Conclusions
0000				
Tangent of	category definition	า		

Definition (Rosický 1984, modified Cockett/Cruttwell 2013)

A tangent category consists of a category ${\mathbb X}$ with:

- an endofunctor $T : \mathbb{X} \to \mathbb{X}$;
- a natural transformation $p: T \rightarrow I$;
- for each M, the pullback of n copies of $p_M : TM \to M$ along itself exists (and is preserved by each T^m), call this pullback T_nM ;
- for each M ∈ X, p_M : TM → M has the structure of a commutative monoid in the slice category X/M, in particular there are natural transformation + : T₂ → T, 0 : I → T;

(Note: composition will be in diagrammatic order.)

Tangent c	ategory definition	(continued)		
0000	00000	0000	00000	0
Introduction	Vector fields and their Lie bracket	Graphical language	Second notation	Conclusions

Definition

- (canonical flip) there is a natural transformation $c : T^2 \rightarrow T^2$ which preserves additive bundle structure and satisfies $c^2 = 1$;
- (vertical lift) there is a natural transformation $\ell : T \to T^2$ which preserves additive bundle structure and satisfies $\ell c = \ell$;
- various other coherence equations for ℓ and c;
- (universality of vertical lift) elements d of T^2M which have T(p) = 0 are uniquely given by elements of T_2M (the second element of T_2M is simply p of d).

Introduction	Vector fields and their Lie bracket	Graphical language	Second notation	Conclusions
0000	00000	0000		O
Examples				

- (*i*) Finite dimensional smooth manifolds with the usual tangent bundle structure.
- (ii) Convenient manifolds with the kinematic tangent bundle.
- (iii) Any Cartesian differential category is a tangent category, with $T(A) = A \times A$ and $T(f) = \langle Df, \pi_1 f \rangle$.
- *(iv)* The infinitesimally linear objects in any model of synthetic differential geometry.
- (v) Both commutative ri(n)gs and its opposite category have tangent structure, as well as various categories in algebraic geometry.

(vi) The category of $C - \infty$ -rings has tangent structure.

Introduction	Vector fields and their Lie bracket	Graphical language	Second notation	Conclusions
0000	00000	0000	00000	
Some the	ory			

- The following are definable concepts in tangent categories:
 - (i) vector bundles;
 - (ii) connections;
 - (iii) differential forms.
- A tangent category in which T is representable by D has an associated rig R with $R^D \cong R \times R$ (ie., R satisfies the Kock-Lawvere axiom).

Introduction 0000	Vector fields and their Lie bracket ●0000	Graphical language	Second notation	Conclusions O
Vector f	ields			

A vector field on M is simply a section of $p_M : TM \to M$.

- The 0 natural transformation provides for every M a vector field $0_M: M \to TM$.
- Since vector fields have the same projection, one can also add two of them: x + y := ⟨x, y⟩+.
- More interesting is that if one has negatives, one can define the Lie bracket of two vector fields *x*, *y*, [*x*, *y*], by the universal property of the vertical lift:

$$\langle xT(y)-,yT(x)c\rangle+$$

is an element of T^2M with T(p) = 0, so [x, y] is defined to be the first part of the corresponding unique element of T_2M .

Introduction	Vector fields and their Lie bracket	Graphical language	Second notation	Conclusions
0000	○●○○○	0000		O
Some brac	ket properties			

It is relatively easy to prove that:

- [x, y] is again a vector field.
- Interpretation is additive in both variables:

 $[x_1 + x_2, y] = [x_1, y] + [x_2, y]$ and $[x, y_1 + y_2] = [x, y_1] + [x, y_2]$.

O Negation reverses the order:

$$[x,y]-=[y,x].$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

	Vector fields and their Lie bracket	Graphical language	Second notation	Conclusions
0000	00000	0000	00000	
Jacobi id	entity			

But the big problem is determining whether the following Jacobi identity holds:

$$[x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0.$$

Rosický provided a proof which was 80 pages and assumed the existence of additional limits. (Which are potentially problematic in some models).

	Vector fields and their Lie bracket	Graphical language	Second notation	Conclusions
	00000			
Jacobi	identity in the stand	dard model		

In smooth manifolds, vector fields x on M are the same as derivations X on the ring $C^{\infty}(M)$, and the Lie bracket of X and Y is simply

$$XY - YX$$

So that the Jacobi identity is straightforward:

$$[X, [Y, Z]] + [Z, [X, Y]] + [Y, [Z, X]]$$

$$= X[Y, Z] - [Y, Z]X + Z[X, Y] - [X, Y]Z + Y[Z, X] - [Z, X]Y$$

$$= XYZ - XZY + YZX - ZYX + ZXY - ZYX$$

$$-XYZ + YXZ + YZX - YXZ - ZXY + XZY$$

$$= 0$$

But we can't do this in a general tangent category!

	Vector fields and their Lie bracket	Graphical language		Conclusions
0000	00000	0000	00000	
Some s	ample calculations			

The calculations quickly get complicated in a tangent category:

- Since the terms are defined by a universal property, it gets tricky to use "parts" of each term to cancel other parts of the other terms.
- Rosický realized that instead of trying to see their universal property, it was easier to post-compose the terms with the lift ℓ :

$$[x, y]\ell = xT(y)T^{2}(x)T^{3}(y) - T(-)T(c)\mu_{1}T(\mu_{1})$$

where

 $\mu_1 = \langle Tp, p \rangle + \text{ is the multiplication of a monad on } T : \mathbb{X} \to \mathbb{X}.$

• Then post-compose the Jacobi term

$$[x, [y, z]] + [z, [x, y]] + [y, [z, x]]$$

with $\ell\ell,$ use the fact that ℓ is a morphism of monads, and try to get the 0 term out.

• What we need is an easier way to manipulate terms like those given above.

We can use the graphical language of the 2-category CAT to do this.

- The object M can be represented as a functor $M: 1 \to \mathbb{X}$.
- A vector field x on M is then a natural transformation $x : M \to MT$.
- Represent $\ell : T \to TT$ by \circ .
- Represent $c : TT \rightarrow TT$ by a crossing of wires.
- Represent $\mu_1 : TT \to T$ by \oplus .
- Negation $-: T \to T$ is represented by •.

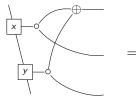
For example, the following diagram

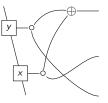


represents $[x,y]\ell = xT(y)T^2(x)T^3(y) - T(-)T(c)\mu_1T(\mu_1)$ is a source of the second second

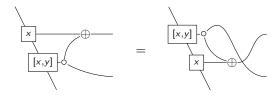
0000	00000	Graphical language 0●00	00000	0
More g	raphical examples			

Another identity that can be established is that:



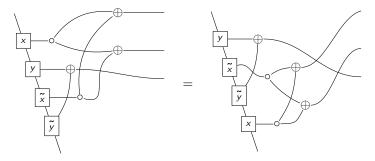


From this identity, one can also prove:



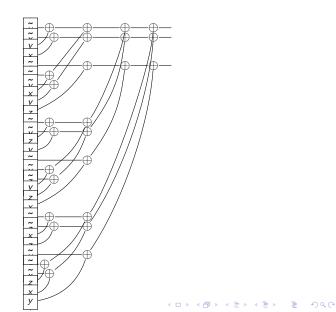
	Vector fields and their Lie bracket	Graphical language	Second notation	Conclusions
		0000		
Further	graphical examples	5		

And also:



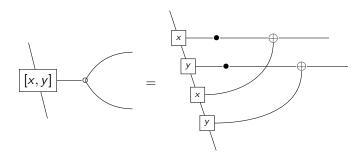
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

(Where now we write \tilde{x} for the negation of x.)



Introduction	Vector fields and their Lie bracket	Graphical language	Second notation	Conclusions
0000	00000	0000		O
Simplifying even further				

- To simplify further, we use an additional layer of notation.
- We present terms in the graphical calculus as a sequence of vector fields, subscripted by which level they are connected to by ℓ or μ_1 .
- For example,

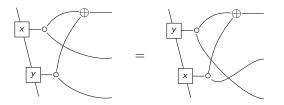


- 日本 - 1 日本 - 日本 - 日本

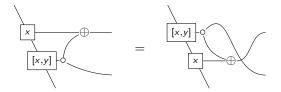
is written as $[x, y]_{12} = \tilde{x}_1 \tilde{y}_2 x_1 y_2$ (1).

Introduction 0000	Vector fields and their Lie bracket 00000	Graphical language	Second notation	Conclusions O
Lemmas	in this notation			

We can represent the other graphical identities in this notation:



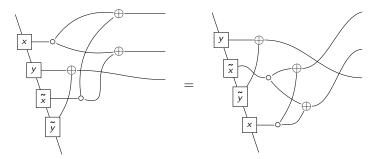
is $x_{12}y_{13} = y_{13}x_{12}$ (2) (two terms lifted to have a level in common commute), and



is $x_1[x, y]_{12} = [x, y]_{12}x_1$ (3) (brackets commute with their constituents):

	Vector fields and their Lie bracket	Graphical language	Second notation	Conclusions
			00000	
Lemmas	s in this notation			

and



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

becomes $x_{12}y_3\tilde{x}_{12}\tilde{y}_3 = y_3\tilde{x}_{12}\tilde{y}_3x_{12}$ (4).

Introduction	Vector fields and their Lie bracket	Graphical language	Second notation	Conclusions
0000	00000	0000		O
Final ve	ersion of the proof			

In this notation, we can now give a relatively short version of the proof:

- $[[x, y], z]_{123}[[y, z], x]_{123}[[z, x], y]_{123}$
- $= [x, y]_{12} z_3 [y, x]_{12} \tilde{z}_3 [y, z]_{23} x_1 [z, y]_{23} \tilde{x}_1 \underline{[x, z]_{31}} \tilde{y}_2 [z, x]_{31} y_2 \text{ (by 1)}$
- $= [x, y]_{12}[x, z]_{31}z_3[y, x]_{12}\tilde{z}_3[y, z]_{23}x_1[z, y]_{23}\tilde{x}_1\tilde{y}_2[z, x]_{31}y_2 \text{ (by 2,3)}$
- $= [x, y]_{12}[x, z]_{31}z_3[y, x]_{12}\tilde{z}_3[y, z]_{23}x_1[z, y]_{23}\underline{\tilde{x}_1\tilde{y}_2x_1y_2}\tilde{y}_2\tilde{z}_3\tilde{x}_1z_3y_2 \text{ (by 1)}$
- $= [x, y]_{12}[x, z]_{31}z_3[y, x]_{12}\tilde{z}_3[y, z]_{23}x_1[z, y]_{23}\underline{[x, y]_{12}}\tilde{y}_2\tilde{z}_3\tilde{x}_1z_3y_2 \text{ (by 1)}$
- $= [x, y]_{12}[x, z]_{31}z_3[y, x]_{12}\tilde{z}_3[x, y]_{12}[y, z]_{23}x_1[\underline{z}, y]_{23}\tilde{y}_2\tilde{z}_3\tilde{x}_1z_3y_2 \text{ (by 2,3)}$
- $= [x, y]_{12}[x, z]_{31}z_3[y, x]_{12}\tilde{z}_3[x, y]_{12}[y, z]_{23}x_1\tilde{z}_3\tilde{y}_2\underline{z}_3y_2\tilde{y}_2\tilde{z}_3\tilde{x}_1z_3y_2 \text{ (by 1)}$

- $= [x, y]_{12}[x, z]_{31}z_3[y, x]_{12}\tilde{z}_3[x, y]_{12}[y, z]_{23}x_1\tilde{z}_3\tilde{y}_2\tilde{x}_1z_3y_2 \text{ (negation)}$
- $= [y, z]_{23}[x, y]_{12}[x, z]_{31}\underline{z}_3[y, x]_{12}\tilde{z}_3[x, y]_{12}x_1\tilde{z}_3\tilde{y}_2\tilde{x}_1z_3y_2 \text{ (by 2,3)}$

- $= [y, z]_{23}[x, y]_{12}[x, z]_{31}[y, x]_{12}\tilde{z}_3[x, y]_{12}z_3x_1\tilde{z}_3\underline{\tilde{x}_1x_1}\tilde{y}_2\tilde{x}_1z_3y_2 \text{ (by 4)}$
- $= [y, z]_{23}[x, y]_{12}[x, z]_{31}[y, x]_{12}\tilde{z}_3[x, y]_{12}[\underline{z}, x]_{13}x_1\tilde{y}_2\tilde{x}_1z_3y_2 \text{ (by 1)}$
- $= [y, z]_{23}[x, y]_{12}[x, z]_{31}[z, x]_{13}[y, x]_{12}\tilde{z}_3[x, y]_{12}x_1\tilde{y}_2\tilde{x}_1z_3y_2 \text{ (by 2,3)}$

- $= [y, z]_{23}[x, y]_{12}[y, x]_{12}\tilde{z}_{3}[x, y]_{12}x_{1}\tilde{y}_{2}\tilde{x}_{1}z_{3}y_{2} \text{ (negation)}$
- $= [y, z]_{23}\tilde{z}_3[x, y]_{12}x_1\tilde{y}_2\tilde{x}_1\underline{y}_2\tilde{y}_2z_3y_2 \text{ (negation)}$
- $= [y, z]_{23}\tilde{z}_3[x, y]_{12}[y, x]_{12}\tilde{y}_2z_3y_2 \text{ (by 1)}$
- $= [y, z]_{23} \tilde{\underline{z}}_3 \tilde{y}_2 z_3 y_2 \text{ (negation)}$
- $= [y, z]_{23}[z, y]_{23}$ (by 1)
- $= 0_{123}$ (negation)

	Vector fields and their Lie bracket	Graphical language		Conclusions
0000	00000	0000	00000	•
Conclusio	ons			

- We have proven Jacobi's identity for tangent categories by making judicious use of the graphical language of 2-categories and then simplifying that further.
- This method may be useful in proving other identities in tangent categories such as the identities of Bianchi and Ricci (these involve connections).

- The result itself may be useful in newly-evolving models of differential geometry (for example, diffeological spaces).
- Is a more conceptual proof possible?