General connections in tangent categories

Geoff Cruttwell Mount Allison University FMCS 2017

"Differential geometry is the study of a connection on a principal bundle." (R. Sharpe)

"I personally feel that the next person to propose a new definition of a connection should be summarily executed." (M. Spivak)

Introduction		Connections on particular types of bundles	Conclusions
0000	0000000	00000	00
Overview			

- Tangent categories provide an abstract framework for differential geometry.
- Much recent work has been done to show how to formulate various ideas from differential geometry in arbitrary tangent categories.
- One particular example is the notion of a **connection on a vector bundle**, formulated for tangent categories by Cockett and Cruttwell and (very) recently re-formulated by Lucyshyn-Wright.

Introduction		Connections on particular types of bundles	Conclusions
00000	0000000	00000	00
Overview			

- Today, I'll describe a version of connection that applies to more general types of bundles (due to Ehresmann) that can also be described in tangent categories.
- I'll also show how the general formulation relates to other formulations of the connection notion, including the particular example of connections on a principal bundle.
- The more general version of connection is (I believe) also easier to understand than connections on specific types of bundles.

Tangent category definition

Definition (Rosický 1984, modified Cockett/Cruttwell 2013)

A tangent category consists of a category ${\mathbb X}$ with:

- tangent bundle functor: an endofunctor $T : \mathbb{X} \to \mathbb{X}$;
- projection of tangent vectors: a natural transformation $p: T \rightarrow 1_{\mathbb{X}}$;
- for each M, the pullback of n copies of p_M along itself exists (and is preserved by each T^m), call this pullback $T_n M$;
- addition and zero tangent vectors: for each M ∈ X, p_M has the structure of a commutative monoid in the slice category X/M; in particular there are natural transformations + : T₂ → T, 0 : 1_X → T;

Introduction 00000	General connections	Connections on particular types of bundles	Conclusions 00
Tangent cate	egory definition	(continued)	

Definition

- symmetry of mixed partial derivatives: a natural transformation $c: T^2 \rightarrow T^2$;
- linearity of the derivative: a natural transformation $\ell: T \to T^2$;
- the vertical bundle of the tangent bundle is trivial:

is a pullback;

• various coherence equations for ℓ and c.

X is a **Cartesian tangent category** if X has products and T preserves them.

Introduction	General connections	Connections on particular types of bundles	Conclusions
00000			
Examples			

- (i) Finite dimensional smooth manifolds with the usual tangent bundle.
- (ii) Convenient manifolds with the kinematic tangent bundle.
- (iii) Any Cartesian differential category (includes all Fermat theories by a result of MacAdam, and Abelian functor calculus by a result of Bauer et. al.).
- *(iv)* The microlinear objects in a model of synthetic differential geometry (SDG).
- (v) Commutative ri(n)gs and its opposite, as well as various other categories in algebraic geometry.
- (vi) The category of C^{∞} -rings.
- (vii) With additional pullback assumptions, tangent categories are closed under slicing.

Note: Building on work of Leung, Garner has shown how tangent categories are a type of enriched category.

	General connections	Connections on particular types of bundles	Conclusions
	000000		
Intuitive ide	a of general co	nnections	

Simply: a **general connection** on a "bundle" $q: E \rightarrow M$ is a choice of a horizontal and vertical co-ordinate system for *TE*.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Introduction 00000	General connections	Connections on particular types of bundles	Conclusions OO
Bundles			

(Provisional definition)

Definition
Say a map $q: E \rightarrow M$ in a tangent category is a bundle if
(i) All pullbacks along q exist and are preserved by each T^n .
(ii) All pullbacks along $T(q)$ exist and are preserved by each T^n .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Example

Fibre bundles in the category of smooth manifolds.

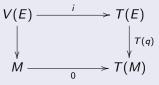
Example

Any map between microlinear objects in a model of SDG.

Vertical b	oundle		
00000	000000	00000	00
Introduction	General connections	Connections on particular types of bundles	Conclusions

Definition

If $q: E \to M$ is a bundle, its **vertical bundle**, V(E), is the following pullback:



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

This has a "lift" map $\ell_V : V(E) \to T(V(E))$ inherited from ℓ_E .

Horizonta	l bundle		
00000	000000	00000	00
Introduction	General connections	Connections on particular types of bundles	Conclusions

Definition

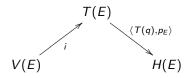
If $q: E \to M$ is a bundle, its **horizontal bundle**, H(E), is the following pullback:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

This has a "lift" map $\ell_H : H(E) \to T(H(E))$ inherited from ℓ_M .

Introduction	General connections	Connections on particular types of bundles	Conclusions
00000	0000●00		00
Associate	d maps		

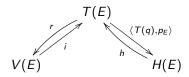
A bundle then has the following diagram of maps:



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

	General connections	Connections on particular types of bundles	Conclusions
00000	0000000	00000	00
General c	onnection		

A **connection** on such a bundle is then required to have maps r, h:



General c	connection contir	nued	
00000	000000	00000	00
Introduction	General connections	Connections on particular types of bundles	Conclusions

satisfying various axioms:

- r a retract of i and h is a section of $\langle T(q), p_E \rangle$;
- *r* stays in the same fibre: $rip_E = p_E$;
- *h* stays in the same fibre: $hp = \pi$;
- r is linear: $r\ell_V = \ell T(r)$;
- *h* is linear: $h\ell = \ell_H T(h)$;
- **Orthogonality**: $hr = \pi 0$;
- Sum decomposition: $ri + \langle T(q), p_E \rangle h = 1_{TE}$.

Note: there should be other ways of expressing these axioms (see Lucyshyn-Wright's alternative versions of connections on differential bundles in tangent categories).

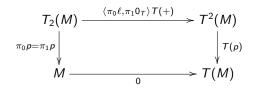
Introduction	General connections	Connections on particular types of bundles	Conclusions
00000	0000000	00000	00
Different	definitions of co	nnection	

So why do differential geometry books have so many different definitions of connection?

- In the category of smooth manifolds, it suffices to give either an *h* or an *r*.
- Ehresmann's version just gives an h.
- As we'll briefly see, for particular types of bundles, the vertical bundle can be trivialized, giving a simpler description of an *r*; the standard definitions are re-formulated versions of such an *r*.

		Connections on particular types of bundles	Conclusions
		0000	
Connections	on the tangent b	oundle	

Recall an axiom for a tangent category is that the following is a pullback:



So in this case $V(T(M)) \cong T_2(M)$, i.e., the vertical bundle of $p: TM \to M$ is trivial.

- Thus, to give an r on the tangent bundle is to give a k : T²M → TM.
- For smooth manifolds, this itself can be re-formulated as giving a **covariant derivative** (an operation on vector fields of *M*).
- The covariant derivative itself can also be described by giving Christoffel symbols of the second kind or connection coefficients.

More generally, for a vector bundle $q: E \rightarrow M$, the vertical bundle is also trivial; that is, there is a map v making the following a pullback:

- Thus, to give an r for such a bundle is to give a k : TE → E.
- Similarly, this itself can be re-formulated as giving a **Koszul** derivative (an operation on sections of the vector bundle).

	luct	
000		

General connections

Connections on particular types of bundles

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Principal G-bundles

Definition

If G is a group in a tangent category, a **principal** G-**bundle** consists of a bundle $q: E \to M$ and a fibre-preserving left G-action $\alpha: G \times E \to E$ which is free and transitive, i.e. such that

$$G \times E \xrightarrow{\langle \alpha, \pi_1 \rangle} E \times_M E$$

is invertible.

Example

Principal G-bundles in the category of smooth manifolds.

Compositions	an Duinainal Ch		
00000	000000	00000	00
Introduction	General connections	Connections on particular types of bundles	Conclusions

Connections on Principal *G*-bundles

Suppose (G, e, m) is a group in a Cartesian tangent category, and let T_eG denote the tangent space of G at e (the pullback of p_G along e), with inclusion $j: T_eG \to TG$.

Theorem

If $q: E \to M$, $\alpha: G \times E \to E$ is a principal G-bundle in a tangent category, then



is a pullback, i.e., its vertical bundle is trivial.

- Thus, to give an r in this case it suffices to give an $\omega: TE \to T_eG$.
- In smooth manifolds, T_eG is known as the **Lie algebra** of G, and so such an ω is a **Lie-algebra valued 1-form** on E.

		Connections on particular types of bundles	Conclusions
00000	000000	00000	•0
Conclusions			

- The general definition of connection can be formulated in tangent categories.
- On specific types of bundles, the general definition can be expressed in different ways which mirror the classical definitions.
- I believe the general definition is the easiest to understand.
- One can also describe notions of curvature and parallel transport for these general connections in tangent categories.

Introduction 00000	General connections	Connections on particular types of bundles	Conclusions ⊙●
References			

- Cockett, R. and Cruttwell, G. Differential structure, tangent structure, and SDG. Applied Categorical Structures, Vol. 22 (2), pg. 331–417, 2014.
- Cockett, R. and Cruttwell, G. **Connections in tangent categories**. Submitted, available at arXiv:1610.08774.
- Epstein, M. Differential geometry: basic notions and physical examples. Springer, 2014.
- Lucyshyn-Wright, R. On the geometric notion of connection and its expression in tangent categories. Available at arXiv:1705.10857.
- Rosický, J. Abstract tangent functors. *Diagrammes*, 12, Exp. No. 3, 1984.