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Reconsidering Cartesian differential categories

We'll discuss:
@ the definition of Cartesian differential categories;
@ a problematic non-example and a solution;
o (generalized) Cartesian differential categories as coalgebras;

@ an application: de Rham cohomology.
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Cartesian differential categories

Goal of Cartesian differential categories: abstract the essential
properties of the category of smooth maps between the Cartesian
spaces R".
@ For a smooth map f : R” —R"™, the Jacobian is a smooth
map
J(f) : R"—Lin[R",R™].

@ We don't want to assume any closed structure, so we uncurry,
thinking of the Jacobian as a map

J(f) : R” x R" —R"™,

which is linear in the first variable.
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Cartesian left additive categories

To describe a category with a Jacobian, we need:
@ a category with products;

@ which has the ability to add any two maps in the same
hom-set;

@ with these structures being compatible (for example, the
projections preserve addition).

Call this a Cartesian left additive category.
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Definition

(Blute/Cockett/Seely) A Cartesian differential category consists
of a Cartesian left additive category X, which has for each map
f:X—Y,amap D[f] : X x X —=Y, such that:

Q@ D(f +g) = D(f) + D(g), D(0) = 0;

@ D((f,g)) = (Df, Dg);

@ D(1) = mo, D(mo) = momo, D(m1) = momy;

Q D(fg) = (Df,m1f)D(g);

@ (a+ b,c)D(f) = (a,c)D(f) + (b,c)D(f),(0,c)D(f) = 0;
Q ((a,0), (b, c))D(D(f)) = (a, c) D(f);

Q@ ((0,b),(c,d))D(D(f)) = ({0, c), (b, d)) D(D(f)).
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Linear maps

Definition

Say that a map f : X — Y is linear if D(f) = mof.

For example, x — « - x.

Definition

Say that a map g : X x Y — Z is linear in the first variable if

<7T0, 07 1, 7('2>D(f) = <7r0, 7T2>f.

@ The second last axiom says D(f) : X x X — Y s itself linear
in its first variable.

@ If the Cartesian closed structure is closed, one asks that
ev: [X, Y] x X —=Y be linear in its first variable
(Bucciarelli/Ehrhard /Manzonetto).
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@ the category whose objects are Cartesian spaces R”, maps are
smooth maps;

e for any ring R, a category of “polynomials in R": objects are
natural numbers, a map f : n— m is m polynomials of
degree nin R;

@ ‘“convenient vector spaces” (Kriegl/Michor 1997) and smooth
maps between them form a Cartesian differential category
(Blute/Ehrhard/Tasson 2011);

e models of differential lambda calculus (Ehrhard/Regnier
2003).
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A non-example

One problematic example, however:

@ The category whose objects are open subsets of R"'s, maps
smooth maps, is not an example.

@ The derivative of a smooth map U C R"— V C R™ does
not have type
D(f): Ux U—V.
@ Instead, it has type

D(f) : R" x U—=R™.
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The domain of D(f) plays two roles

The problem is the following:
@ in the type of the derivative

D(f): X x X —=Y,

the two X's play different roles:
@ the first X one thinks of as “vectors”, the second as “points”.

We need to formalize this.
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A generalized Cartesian differential category consists of a
X, which has
, and
for each map f : X — Y, an associated map
, such that:

(1]

@ D((f.g)) = (Df, Dg);

@ D(1) = mo, D(mo) = momo, D(m1) = momy;

Q D(fg) = (Df, mf)D(g);

@ (a+b,c)D(f) = (a,c)D(f) + (b, c)D(f), (0, c) D(f) = 0;
O ((a,0), (b, c))D(D(f)) = (a, c) D(f);

Q@ ((0, b), (c, d))D(D(f)) = ({0, c), (b, d)) D(D(f)).
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Faa di bruno functor

Cockett and Seely showed a remarkable result: Cartesian
differential categories are (almost) the coalgebras for a certain
comonad.

Definition

Given a Cartesian left additive category X, define a Cartesian left
additive category Faa(X) with:
@ an object is a pair of objects (A, X);
@ amap f: (A, X)—(B,Y) consists of a sequence of maps
(fi)ien, where:
o fy: X—Y,;
o fi : Ax X—=Y (additive in the first variable);
o f,: A" x X —=Y; (additive in each of the first n variables).
@ composition of fy is usual, f; by chain rule, higher maps by
“higher-order” chain rule.
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Faa di bruno functor

@ Faa is an endofunctor on Cartesian left additive categories;
@ with an obvious co-unit 1 : Faa(X) —X;
@ and less obvious co-multiplication

J : Faa(X) — Faa(Faa(X));

@ making it into a comonad.
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Cartesian differential categories as coalgebras

Every Cartesian differential category is a coalgebra
C : X—Faa(X), with:
o C(X)=(X,X),
e C(f) = (f,D(f), Dx(f), D3(f),...).
Every coalgebra with C(X) = (X, X) is a Cartesian differential
category, with derivative D(f) = C(f);.



Faa di Bruno
[e]eleY Yolo)

An alternate comonad

Given a , define a category Faa(X) with:




Faa di Bruno
[e]eleY Yolo)

An alternate comonad

Given a , define a category Faa(X) with:

@ an object consists of a pair (a monoid object
together with an arbitrary object),




Faa di Bruno
[e]eleY Yolo)

An alternate comonad

Given a , define a category Faa(X) with:

@ an object consists of a pair (a monoid object
together with an arbitrary object),
@ amap f: (A, X)—(B,Y) consists of a sequence of maps
(f})ien, where:
o fp: X—Y;
o fi : Ax X—=Y (additive in the first variable);
o fh: A" x X —=Y; (additive in each of the first n variables).




Faa di Bruno
[e]eleY Yolo)

An alternate comonad

Given a , define a category Faa(X) with:
@ an object consists of a pair (a monoid object
together with an arbitrary object),
@ amap f: (A, X)—(B,Y) consists of a sequence of maps
(f})ien, where:
o fp: X—Y;
o fi : Ax X—=Y (additive in the first variable);
o fh: A" x X —=Y; (additive in each of the first n variables).
@ composition of fy is usual, f1 by chain rule, higher maps by
“higher-order” chain rule.




Faa di Bruno
0000®0

Generalized Cartesian differential categories as coalgebras

Every generalized Cartesian differential category is a coalgebra
C : X—Faa(X), with:



Faa di Bruno
0000®0

Generalized Cartesian differential categories as coalgebras

Every generalized Cartesian differential category is a coalgebra
C : X—Faa(X), with:

o C(X) = ((L(X), +x; &), X),



Faa di Bruno
0000®0

Generalized Cartesian differential categories as coalgebras

Every generalized Cartesian differential category is a coalgebra
C : X—Faa(X), with:

o C(X) = ((L(X), +x, &), X),
o C(f) = (f, D(f), Da(f), Ds(f),...).



Faa di Bruno
0000®0

Generalized Cartesian differential categories as coalgebras

Every generalized Cartesian differential category is a coalgebra
C : X—Faa(X), with:

o C(X) = ((L(X), +x &), X),
o C(f) = (f,D(f), Da(f), D5(f),...).
Even better:

@ Every coalgebra is a generalized Cartesian differential
category, with derivative D(f) = C(f);.



Faa di Bruno
0000®0

Generalized Cartesian differential categories as coalgebras

Every generalized Cartesian differential category is a coalgebra
C : X—Faa(X), with:

o C(X) = ((L(X), +x &), X),
o C(f) = (f,D(f), Da(f), D5(f),...).
Even better:

@ Every coalgebra is a generalized Cartesian differential
category, with derivative D(f) = C(f);.

@ So every Cartesian category X has an associated generalized
Cartesian differential category Faa(X).
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Points in favour of the generalized version

@ allows for open subset examples;
@ is what the definition “wants to be";

@ is the coalgebras for a more natural comonad.
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Introduction

Here, we'll define de Rham cohomology for any generalized
Cartesian differential category:
@ reproduces the usual definition when applied to Cartesian
spaces;
@ reproduces the de Rham cohomology for convenient vector
spaces and their open subsets.
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Differential Forms

Fix an object R of the form R = L(R).

Definition
If X is a generalized Cartesian differential category and kK > 1, a
k-form is a map

w:l(X)*x X—R

with:
@ w is linear in each of its first k variables;

@ w is alternating (equals 0 with any repeated variables).

A 0-form is a map w : X — R which has an additive inverse.

4

Let Qx(X) be the set of k-forms of an object X; they can be given
the structure of an Abelian group.
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de Rham complex

This gives a cochain complex:
@ each Q4(X) is a contravariant functor to Abelian groups;
@ there are natural transformations d : Q4 (X) — Qx1(X)
(“exterior differentiation”) defined by

k

> (1) mi, mo, 1, . . Fhy Wig - . ) Dx(w)
i=0

e which have d? = 0;
The resulting cohomology is de Rham cohomology.

@ Note: this uses all the axioms of a generalized Cartesian
differential category!



Conclusion
°

Conclusion

This generalization is, in many respects, more natural than the
original formulation:



Conclusion
°

Conclusion

This generalization is, in many respects, more natural than the
original formulation:

@ allows for examples involving open subsets;



Conclusion
°

Conclusion

This generalization is, in many respects, more natural than the
original formulation:

@ allows for examples involving open subsets;

@ more natural as the coalgebras for a certain comonad,;



Conclusion
°

Conclusion

This generalization is, in many respects, more natural than the
original formulation:

@ allows for examples involving open subsets;
@ more natural as the coalgebras for a certain comonad,;

@ while more general, it is still powerful enough to define
constructions such as de Rham cohomology.
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