Introduction	Cartesian differential categories	Generalized CDCs	Faà di Bruno	de Rham cohomology	Conclusion

Reconsidering Cartesian differential categories CIRM Marseille

Geoff Cruttwell University of Ottawa

February 24th, 2012

Introduction Cartesian differential categories Generalized CDCs Faà di Bruno de Rham cohomology Conclusion o Reconsidering Cartesian differential categories

We'll discuss:

• the definition of Cartesian differential categories;

- the definition of Cartesian differential categories;
- a problematic non-example and a solution;

- the definition of Cartesian differential categories;
- a problematic non-example and a solution;
- (generalized) Cartesian differential categories as coalgebras;

Reconsidering Cartesian differential categories

- the definition of Cartesian differential categories;
- a problematic non-example and a solution;
- (generalized) Cartesian differential categories as coalgebras;
- an application: de Rham cohomology.

Introduction	Cartesian differential categories	Generalized CDCs	Faà di Bruno	de Rham cohomology	Conclusion
0	●0000		000000	000	O
Cartesi	an differential ca	ategories			

Goal of Cartesian differential categories: abstract the essential properties of the category of smooth maps between the Cartesian spaces \mathbb{R}^{n} .

Goal of Cartesian differential categories: abstract the essential properties of the category of smooth maps between the Cartesian spaces \mathbb{R}^n .

• For a smooth map $f : \mathbb{R}^n \longrightarrow \mathbb{R}^m$, the Jacobian is a smooth map

$$J(f): \mathbb{R}^n \longrightarrow \operatorname{Lin}[\mathbb{R}^n, \mathbb{R}^m].$$

Goal of Cartesian differential categories: abstract the essential properties of the category of smooth maps between the Cartesian spaces \mathbb{R}^n .

• For a smooth map $f : \mathbb{R}^n \longrightarrow \mathbb{R}^m$, the Jacobian is a smooth map

$$J(f): \mathbb{R}^n \longrightarrow \operatorname{Lin}[\mathbb{R}^n, \mathbb{R}^m].$$

• We don't want to assume any closed structure, so we uncurry, thinking of the Jacobian as a map

$$J(f): \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}^m,$$

which is linear in the first variable.

Contrat					
	0000	000	000000	000	
Introduction	Cartesian differential categories	Generalized CDCs	Faà di Bruno	de Rham cohomology	Conclusion

To describe a category with a Jacobian, we need:

• a category with products;

- a category with products;
- which has the ability to add any two maps in the same hom-set;

- a category with products;
- which has the ability to add any two maps in the same hom-set;
- with these structures being compatible (for example, the projections preserve addition).

- a category with products;
- which has the ability to add any two maps in the same hom-set;
- with these structures being compatible (for example, the projections preserve addition).
- Call this a Cartesian left additive category.

Introduction 0	Cartesian differential categories	Generalized CDCs	Faà di Bruno 000000	de Rham cohomology 000	Conclusion 0
Definit	ion				

(Blute/Cockett/Seely) A **Cartesian differential category** consists of a Cartesian left additive category \mathbb{X} , which has for each map $f: X \longrightarrow Y$, a map $D[f]: X \times X \longrightarrow Y$, such that:

Introduction	Cartesian differential categories	Generalized CDCs	Faà di Bruno	de Rham cohomology	Conclusion
0	00●00		000000	000	0
Definit	ion				

(Blute/Cockett/Seely) A **Cartesian differential category** consists of a Cartesian left additive category \mathbb{X} , which has for each map $f: X \longrightarrow Y$, a map $D[f]: X \times X \longrightarrow Y$, such that:

•
$$D(f+g) = D(f) + D(g), D(0) = 0;$$

3
$$D(1) = \pi_0, D(\pi_0) = \pi_0 \pi_0, D(\pi_1) = \pi_0 \pi_1;$$

•
$$D(fg) = \langle Df, \pi_1 f \rangle D(g);$$

$$(a+b,c)D(f) = \langle a,c\rangle D(f) + \langle b,c\rangle D(f), \langle 0,c\rangle D(f) = 0;$$

$$(\langle a, 0 \rangle, \langle b, c \rangle) D(D(f)) = \langle a, c \rangle D(f);$$

Introduction	Cartesian differential categories	Generalized CDCs	Faà di Bruno	de Rham cohomology	Conclusion
0		000	000000	000	0
Linear	maps				

Say that a map $f: X \longrightarrow Y$ is **linear** if $D(f) = \pi_0 f$.

For example, $x \mapsto \alpha \cdot x$.

Introduction	Cartesian differential categories	Generalized CDCs	Faà di Bruno	de Rham cohomology	Conclusion
0		000	000000	000	0
linear	maps				

Say that a map
$$f: X \longrightarrow Y$$
 is **linear** if $D(f) = \pi_0 f$.

For example, $x \mapsto \alpha \cdot x$.

Definition

Say that a map $g: X \times Y \longrightarrow Z$ is **linear in the first variable** if

$$\langle \pi_0, 0, \pi_1, \pi_2 \rangle D(f) = \langle \pi_0, \pi_2 \rangle f.$$

Introduction	Cartesian differential categories	Generalized CDCs	Faà di Bruno	de Rham cohomology	Conclusion
0		000	000000	000	0
linear	maps				

Say that a map
$$f: X \longrightarrow Y$$
 is **linear** if $D(f) = \pi_0 f$.

For example, $x \mapsto \alpha \cdot x$.

Definition

Say that a map $g: X \times Y \longrightarrow Z$ is **linear in the first variable** if

$$\langle \pi_0, 0, \pi_1, \pi_2 \rangle D(f) = \langle \pi_0, \pi_2 \rangle f.$$

 The second last axiom says D(f) : X × X → Y is itself linear in its first variable.

Introduction	Cartesian differential categories	Generalized CDCs	Faà di Bruno	de Rham cohomology	Conclusion
0		000	000000	000	0
linear	maps				

Say that a map
$$f: X \longrightarrow Y$$
 is **linear** if $D(f) = \pi_0 f$.

For example, $x \mapsto \alpha \cdot x$.

Definition

Say that a map $g: X \times Y \longrightarrow Z$ is **linear in the first variable** if

$$\langle \pi_0, 0, \pi_1, \pi_2 \rangle D(f) = \langle \pi_0, \pi_2 \rangle f.$$

- The second last axiom says D(f) : X × X → Y is itself linear in its first variable.
- If the Cartesian closed structure is closed, one asks that ev : [X, Y] × X → Y be linear in its first variable (Bucciarelli/Ehrhard/Manzonetto).

Introduction	Cartesian differential categories	Generalized CDCs	Faà di Bruno	de Rham cohomology	Conclusion
O		000	000000	000	O
Examp	les				

 the category whose objects are Cartesian spaces ℝⁿ, maps are smooth maps;

Introduction 0	Cartesian differential categories	Generalized CDCs	Faà di Bruno 000000	de Rham cohomology 000	Conclusion 0
Examp	les				

- the category whose objects are Cartesian spaces ℝⁿ, maps are smooth maps;
- for any ring R, a category of "polynomials in R": objects are natural numbers, a map f : n → m is m polynomials of degree n in R;

Introduction	Cartesian differential categories	Generalized CDCs	Faà di Bruno	de Rham cohomology	Conclusion
0	0000●		000000	000	0
Examp	les				

- the category whose objects are Cartesian spaces ℝⁿ, maps are smooth maps;
- for any ring R, a category of "polynomials in R": objects are natural numbers, a map f : n → m is m polynomials of degree n in R;
- "convenient vector spaces" (Kriegl/Michor 1997) and smooth maps between them form a Cartesian differential category (Blute/Ehrhard/Tasson 2011);

Introduction	Cartesian differential categories	Generalized CDCs	Faà di Bruno	de Rham cohomology	Conclusion
0	0000●	000	000000	000	O
Examp	les				

- the category whose objects are Cartesian spaces ℝⁿ, maps are smooth maps;
- for any ring R, a category of "polynomials in R": objects are natural numbers, a map f : n → m is m polynomials of degree n in R;
- "convenient vector spaces" (Kriegl/Michor 1997) and smooth maps between them form a Cartesian differential category (Blute/Ehrhard/Tasson 2011);
- models of differential lambda calculus (Ehrhard/Regnier 2003).

Introduction	Cartesian differential categories	Generalized CDCs	Faà di Bruno	de Rham cohomology	Conclusion
0	0000●	000	000000	000	O
Examp	les				

- the category whose objects are Cartesian spaces ℝⁿ, maps are smooth maps;
- for any ring R, a category of "polynomials in R": objects are natural numbers, a map f : n → m is m polynomials of degree n in R;
- "convenient vector spaces" (Kriegl/Michor 1997) and smooth maps between them form a Cartesian differential category (Blute/Ehrhard/Tasson 2011);
- models of differential lambda calculus (Ehrhard/Regnier 2003).

Introduction 0	Cartesian differential categories	Generalized CDCs ●00	Faà di Bruno 000000	de Rham cohomology 000	Conclusion 0
A non-	example				

Introduction	Cartesian differential categories	Generalized CDCs	Faà di Bruno	de Rham cohomology	Conclusion
0		●00	000000	000	0
A non-	example				

• The category whose objects are open subsets of \mathbb{R}^{n} 's, maps smooth maps, is not an example.

Introduction	Cartesian differential categories	Generalized CDCs	Faà di Bruno	de Rham cohomology	Conclusion
0		●00	000000	000	O
A non-	example				

- The category whose objects are open subsets of \mathbb{R}^{n} 's, maps smooth maps, is not an example.
- The derivative of a smooth map $U \subseteq \mathbb{R}^n \longrightarrow V \subseteq \mathbb{R}^m$ does not have type

 $D(f): U \times U \longrightarrow V.$

Introduction	Cartesian differential categories	Generalized CDCs	Faà di Bruno	de Rham cohomology	Conclusion
0		●00	000000	000	0
A non-	example				

- The category whose objects are open subsets of \mathbb{R}^{n} 's, maps smooth maps, is not an example.
- The derivative of a smooth map $U \subseteq \mathbb{R}^n \longrightarrow V \subseteq \mathbb{R}^m$ does not have type

 $D(f): U \times U \longrightarrow V.$

Instead, it has type

$$D(f): \mathbb{R}^n \times U \longrightarrow \mathbb{R}^m.$$

Introduction Cartesian differential categories Generalized CDCs σ_{000} Faà di Bruno de Rham cohomology Conclusion on the domain of D(f) plays two roles

The problem is the following:

• in the type of the derivative

$$D(f): X \times X \longrightarrow Y,$$

the two X's play different roles:

Introduction Cartesian differential categories Generalized CDCs ooo Faà di Bruno de Rham cohomology Conclusion ooo The domain of D(f) plays two roles

The problem is the following:

• in the type of the derivative

$$D(f): X \times X \longrightarrow Y$$
,

the two X's play different roles:

• the first X one thinks of as "vectors", the second as "points".

Introduction Cartesian differential categories Generalized CDCs ooo Faà di Bruno de Rham cohomology Conclusion ooo The domain of D(f) plays two roles

The problem is the following:

• in the type of the derivative

$$D(f): X \times X \longrightarrow Y$$
,

the two X's play different roles:

• the first X one thinks of as "vectors", the second as "points". We need to formalize this.

0	00000	000	000000	000	0			
Generalized definition								

A generalized Cartesian differential category consists of a Cartesian category \mathbb{X} , which has for each object X, an associated monoid $(L(X), +_X, e_X)$ (preserving products and idempotent), and for each map $f : X \longrightarrow Y$, an associated map $D(f) : L(X) \times X \longrightarrow L(Y)$, such that:

Introduction	Cartesian differential categories	Generalized CDCs	Faà di Bruno	de Rham cohomology	Conclusion
0		○○●	000000	000	0
Genera	lized definition				

A generalized Cartesian differential category consists of a Cartesian category X, which has for each object X, an associated monoid $(L(X), +_X, e_X)$ (preserving products and idempotent), and for each map $f: X \longrightarrow Y$, an associated map $D(f): L(X) \times X \longrightarrow L(Y)$, such that: **1** for each $X_1 + x$ and e_X are linear; $D(\langle f, g \rangle) = \langle Df, Dg \rangle;$ **3** $D(1) = \pi_0, D(\pi_0) = \pi_0 \pi_0, D(\pi_1) = \pi_0 \pi_1;$ • $D(fg) = \langle Df, \pi_1 f \rangle D(g);$ $(a+b,c)D(f) = \langle a,c\rangle D(f) + \langle b,c\rangle D(f), \langle 0,c\rangle D(f) = 0;$ $(\langle a, 0 \rangle, \langle b, c \rangle) D(D(f)) = \langle a, c \rangle D(f);$ $(\langle 0, b \rangle, \langle c, d \rangle) D(D(f)) = \langle \langle 0, c \rangle, \langle b, d \rangle) D(D(f)).$

Introduction 0	Cartesian differential categories	Generalized CDCs	Faà di Bruno ●00000	de Rham cohomology 000	Conclusion 0
Faà di	bruno functor				

Cockett and Seely showed a remarkable result: Cartesian differential categories are (almost) the coalgebras for a certain comonad.

Introduction 0	Cartesian differential categories	Generalized CDCs	Faà di Bruno ●00000	de Rham cohomology 000	Conclusion O
Faà di	bruno functor				

Cockett and Seely showed a remarkable result: Cartesian differential categories are (almost) the coalgebras for a certain comonad.

Definition

Given a Cartesian left additive category $\mathbb X,$ define a Cartesian left additive category $\textbf{Faà}(\mathbb X)$ with:

• an object is a pair of objects (A, X);
Eab di l	brung functor				-
Introduction	Cartesian differential categories	Generalized CDCs	Faà di Bruno	de Rham cohomology	Conclusion
0		000	●00000	000	0

Cockett and Seely showed a remarkable result: Cartesian differential categories are (almost) the coalgebras for a certain comonad.

Definition

Given a Cartesian left additive category $\mathbb X,$ define a Cartesian left additive category $\textbf{Faa}(\mathbb X)$ with:

- an object is a pair of objects (A, X);
- a map $f: (A, X) \longrightarrow (B, Y)$ consists of a sequence of maps $(f_i)_{i \in \mathbb{N}}$, where:
 - $f_0: X \longrightarrow Y;$
 - $f_1: A \times X \longrightarrow Y$ (additive in the first variable);
 - $f_n: A^n \times X \longrightarrow Y$; (additive in each of the first *n* variables).

Introduction 0	Cartesian differential categories	Generalized CDCs	Faà di Bruno ●00000	de Rham cohomology 000	Conclusion O
Faà di l	bruno functor				

Cockett and Seely showed a remarkable result: Cartesian differential categories are (almost) the coalgebras for a certain comonad.

Definition

Given a Cartesian left additive category $\mathbb X,$ define a Cartesian left additive category $\textbf{Faa}(\mathbb X)$ with:

- an object is a pair of objects (A, X);
- a map $f: (A, X) \longrightarrow (B, Y)$ consists of a sequence of maps $(f_i)_{i \in \mathbb{N}}$, where:
 - $f_0: X \longrightarrow Y;$
 - $f_1: A \times X \longrightarrow Y$ (additive in the first variable);
 - $f_n: A^n \times X \longrightarrow Y$; (additive in each of the first *n* variables).
- composition of f_0 is usual, f_1 by chain rule, higher maps by "higher-order" chain rule.

Introduction 0	Cartesian differential categories	Generalized CDCs	Faà di Bruno 0●0000	de Rham cohomology 000	Conclusion 0
Faà di	bruno functor				

• Faà is an endofunctor on Cartesian left additive categories;

Introduction 0	Cartesian differential categories	Generalized CDCs	Faà di Bruno 0●0000	de Rham cohomology 000	Conclusion O
Faà di	bruno functor				

- Faà is an endofunctor on Cartesian left additive categories;
- with an obvious co-unit η : **Faà**(X) \longrightarrow X;

Introduction 0	Cartesian differential categories	Generalized CDCs	Faà di Bruno 0●0000	de Rham cohomology 000	Conclusion O
Faà di	bruno functor				

- Faà is an endofunctor on Cartesian left additive categories;
- with an obvious co-unit η : **Faà**(\mathbb{X}) $\longrightarrow \mathbb{X}$;
- and less obvious co-multiplication $\delta : \mathbf{Faa}(\mathbb{X}) \longrightarrow \mathbf{Faa}(\mathbf{Faa}(\mathbb{X}));$

Introduction 0	Cartesian differential categories	Generalized CDCs	Faà di Bruno 0●0000	de Rham cohomology 000	Conclusion 0
Faà di	bruno functor				

- Faà is an endofunctor on Cartesian left additive categories;
- with an obvious co-unit $\eta : \mathbf{Faa}(\mathbb{X}) \longrightarrow \mathbb{X};$
- and less obvious co-multiplication $\delta : \mathbf{Faa}(\mathbb{X}) \longrightarrow \mathbf{Faa}(\mathbf{Faa}(\mathbb{X}));$
- making it into a comonad.

Every Cartesian differential category is a coalgebra $C : \mathbb{X} \longrightarrow \mathbf{Faa}(\mathbb{X})$, with:

Every Cartesian differential category is a coalgebra $C : \mathbb{X} \longrightarrow \mathbf{Faa}(\mathbb{X})$, with:

•
$$C(X) = (X, X)$$
,

Every Cartesian differential category is a coalgebra $C : \mathbb{X} \longrightarrow \mathbf{Faa}(\mathbb{X})$, with:

•
$$C(X) = (X, X)$$
,

•
$$C(f) = (f, D(f), D_2(f), D_3(f), \ldots).$$

Every Cartesian differential category is a coalgebra $C : \mathbb{X} \longrightarrow \mathbf{Faa}(\mathbb{X})$, with:

•
$$C(X) = (X, X)$$
,

•
$$C(f) = (f, D(f), D_2(f), D_3(f), \ldots).$$

Every coalgebra with C(X) = (X, X) is a Cartesian differential category, with derivative $D(f) = C(f)_1$.

Introduction 0	Cartesian differential categories	Generalized CDCs	Faà di Bruno 000●00	de Rham cohomology 000	Conclusion O
An alte	rnate comonad				

Definition

Given a category with products \mathbb{X} , define a category $Faa(\mathbb{X})$ with:

Introduction 0	Cartesian differential categories	Generalized CDCs	Faà di Bruno 000●00	de Rham cohomology 000	Conclusion 0
An alte	rnate comonad				

Definition

Given a category with products X, define a category **Faà**(X) with:

an object consists of a pair ((A, +, e), X) (a monoid object together with an arbitrary object),

Introduction 0	Cartesian differential categories	Generalized CDCs	Faà di Bruno 000●00	de Rham cohomology 000	Conclusion 0
An alte	rnate comonad				

Definition

Given a category with products X, define a category **Faà**(X) with:

- an object consists of a pair ((A, +, e), X) (a monoid object together with an arbitrary object),
- a map $f: (A, X) \longrightarrow (B, Y)$ consists of a sequence of maps $(f_i)_{i \in \mathbb{N}}$, where:

•
$$f_0: X \longrightarrow Y;$$

- $f_1 : A \times X \longrightarrow Y$ (additive in the first variable);
- $f_n: A^n \times X \longrightarrow Y$; (additive in each of the first *n* variables).

Introduction 0	Cartesian differential categories	Generalized CDCs	Faà di Bruno 000●00	de Rham cohomology 000	Conclusion O
A I.					

An alternate comonad

Definition

Given a category with products X, define a category **Fa** $\hat{a}(X)$ with:

- an object consists of a pair ((A, +, e), X) (a monoid object together with an arbitrary object),
- a map $f: (A, X) \longrightarrow (B, Y)$ consists of a sequence of maps $(f_i)_{i \in \mathbb{N}}$, where:
 - $f_0: X \longrightarrow Y;$
 - $f_1: A \times X \longrightarrow Y$ (additive in the first variable);
 - $f_n: A^n \times X \longrightarrow Y$; (additive in each of the first *n* variables).
- composition of f_0 is usual, f_1 by chain rule, higher maps by "higher-order" chain rule.

•
$$C(X) = ((L(X), +_x, e_x), X),$$

- $C(X) = ((L(X), +_x, e_x), X),$
- $C(f) = (f, D(f), D_2(f), D_3(f), \ldots).$

- $C(X) = ((L(X), +_x, e_x), X),$
- $C(f) = (f, D(f), D_2(f), D_3(f), \ldots).$

Even better:

• Every coalgebra is a generalized Cartesian differential category, with derivative $D(f) = C(f)_1$.

- $C(X) = ((L(X), +_x, e_x), X),$
- $C(f) = (f, D(f), D_2(f), D_3(f), \ldots).$

Even better:

- Every coalgebra is a generalized Cartesian differential category, with derivative $D(f) = C(f)_1$.
- So every Cartesian category X has an associated generalized Cartesian differential category **Faà**(X).

Points in favour of the generalized version

• allows for open subset examples;

Points in favour of the generalized version

- allows for open subset examples;
- is what the definition "wants to be";

Introduction 0	Cartesian differential	categories	Generalized	CDCs	Faà di Bi 00000●	runo	de Rham cohomology 000	Conclusion O
_ .								

Points in favour of the generalized version

- allows for open subset examples;
- is what the definition "wants to be";
- is the coalgebras for a more natural comonad.

Introduction 0	Cartesian differential categories	Generalized CDCs	Faà di Bruno 000000	de Rham cohomology ●00	Conclusion 0
Introdu	iction				

Here, we'll define de Rham cohomology for any generalized Cartesian differential category:

Introduction	Cartesian differential categories	Generalized CDCs	Faà di Bruno	de Rham cohomology	Conclusion
0		000	000000	●00	0
Introdu	iction				

Here, we'll define de Rham cohomology for any generalized Cartesian differential category:

reproduces the usual definition when applied to Cartesian spaces;

Introduction 0	Cartesian differential categories	Generalized CDCs	Faà di Bruno 000000	de Rham cohomology ●00	Conclusion 0
Introdu	iction				

Here, we'll define de Rham cohomology for any generalized Cartesian differential category:

- reproduces the usual definition when applied to Cartesian spaces;
- reproduces the de Rham cohomology for convenient vector spaces and their open subsets.

Introduction	Cartesian differential categories	Generalized CDCs	Faà di Bruno	de Rham cohomology	Conclusion
0		000	000000	○●○	O
Differe	ntial Forms				

Introduction 0	Cartesian differential categories	Generalized CDCs	Faà di Bruno 000000	de Rham cohomology ⊙●○	Conclusion O
Differe	ntial Forms				

Definition

If $\mathbb X$ is a generalized Cartesian differential category and $k\geq 1$, a k-form is a map

$$\omega: L(X)^k \times X \longrightarrow R$$

with:

• ω is linear in each of its first k variables;

Introduction 0	Cartesian differential categories	Generalized CDCs	Faà di Bruno 000000	de Rham cohomology 0●0	Conclusion 0
Differe	ntial Forms				

Definition

If $\mathbb X$ is a generalized Cartesian differential category and $k \geq 1$, a k-form is a map

 $\omega: L(X)^k \times X \longrightarrow R$

with:

- ω is linear in each of its first k variables;
- ω is alternating (equals 0 with any repeated variables).

A 0-form is a map $\omega : X \longrightarrow R$ which has an additive inverse.

Introduction	Cartesian differential categories	Generalized CDCs	Faà di Bruno	de Rham cohomology	Conclusion
0		000	000000	0●0	O
Differe	ntial Forms				

Definition

If $\mathbb X$ is a generalized Cartesian differential category and $k\geq 1$, a k-form is a map

 $\omega: L(X)^k \times X \longrightarrow R$

with:

- ω is linear in each of its first k variables;
- ω is alternating (equals 0 with any repeated variables).

A 0-form is a map $\omega : X \longrightarrow R$ which has an additive inverse.

Let $\Omega_k(X)$ be the set of k-forms of an object X; they can be given the structure of an Abelian group.

Introduction	Cartesian differential categories	Generalized CDCs	Faà di Bruno	de Rham cohomology	Conclusion
0		000	000000	00●	0
de Rha	m complex				

• each $\Omega_k(X)$ is a contravariant functor to Abelian groups;

Introduction O	Cartesian differential categories	Generalized CDCs	Faà di Bruno 000000	de Rham cohomology 00●	Conclusion 0
de Rha	m complex				

- each $\Omega_k(X)$ is a contravariant functor to Abelian groups;
- there are natural transformations $d : \Omega_k(X) \longrightarrow \Omega_{k+1}(X)$ ("exterior differentiation") defined by

$$\sum_{i=0}^{k} (-1)^{i} \langle \pi_{i}, \pi_{0}, \pi_{1}, \dots \widehat{\pi_{i}}, \pi_{i+1} \dots \pi_{k} \rangle D_{X}(\omega)$$

Introduction O	Cartesian differential categories	Generalized CDCs	Faà di Bruno 000000	de Rham cohomology 00●	Conclusion 0
de Rha	m complex				

- each $\Omega_k(X)$ is a contravariant functor to Abelian groups;
- there are natural transformations $d : \Omega_k(X) \longrightarrow \Omega_{k+1}(X)$ ("exterior differentiation") defined by

$$\sum_{i=0}^{k} (-1)^{i} \langle \pi_{i}, \pi_{0}, \pi_{1}, \dots \widehat{\pi_{i}}, \pi_{i+1} \dots \pi_{k} \rangle D_{X}(\omega)$$

• which have
$$d^2 = 0$$
;

Introduction O	Cartesian differential categories	Generalized CDCs	Faà di Bruno 000000	de Rham cohomology 00●	Conclusion 0
de Rha	m complex				

- each $\Omega_k(X)$ is a contravariant functor to Abelian groups;
- there are natural transformations $d : \Omega_k(X) \longrightarrow \Omega_{k+1}(X)$ ("exterior differentiation") defined by

$$\sum_{i=0}^{k} (-1)^{i} \langle \pi_{i}, \pi_{0}, \pi_{1}, \dots \widehat{\pi_{i}}, \pi_{i+1} \dots \pi_{k} \rangle D_{X}(\omega)$$

• which have $d^2 = 0$;

The resulting cohomology is de Rham cohomology.

Introduction O	Cartesian differential categories	Generalized CDCs	Faà di Bruno 000000	de Rham cohomology 00●	Conclusion 0
de Rha	m complex				

- each $\Omega_k(X)$ is a contravariant functor to Abelian groups;
- there are natural transformations $d : \Omega_k(X) \longrightarrow \Omega_{k+1}(X)$ ("exterior differentiation") defined by

$$\sum_{i=0}^{k} (-1)^{i} \langle \pi_{i}, \pi_{0}, \pi_{1}, \dots \widehat{\pi_{i}}, \pi_{i+1} \dots \pi_{k} \rangle D_{X}(\omega)$$

• which have $d^2 = 0$;

The resulting cohomology is de Rham cohomology.

• Note: this uses all the axioms of a generalized Cartesian differential category!

Introduction 0	Cartesian differential categories	Generalized CDCs	Faà di Bruno 000000	de Rham cohomology 000	Conclusion •
Conclu	sion				

This generalization is, in many respects, more natural than the original formulation:

Introduction	Cartesian differential categories	Generalized CDCs	Faà di Bruno	de Rham cohomology	Conclusion
O		000	000000	000	•
Conclu	sion				

This generalization is, in many respects, more natural than the original formulation:

• allows for examples involving open subsets;
Introduction	Cartesian differential categories	Generalized CDCs	Faà di Bruno	de Rham cohomology	Conclusion
O		000	000000	000	•
Conclu	sion				

This generalization is, in many respects, more natural than the original formulation:

- allows for examples involving open subsets;
- more natural as the coalgebras for a certain comonad;

Introduction	Cartesian differential categories	Generalized CDCs	Faà di Bruno	de Rham cohomology	Conclusion	
0		000	000000	000	•	
Conclusion						

This generalization is, in many respects, more natural than the original formulation:

- allows for examples involving open subsets;
- more natural as the coalgebras for a certain comonad;
- while more general, it is still powerful enough to define constructions such as de Rham cohomology.