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Reconsidering Cartesian differential categories

We’ll discuss:

the definition of Cartesian differential categories;

a problematic non-example and a solution;

(generalized) Cartesian differential categories as coalgebras;

an application: de Rham cohomology.
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Cartesian differential categories

Goal of Cartesian differential categories: abstract the essential
properties of the category of smooth maps between the Cartesian
spaces Rn.

For a smooth map f : Rn // Rm, the Jacobian is a smooth
map

J(f ) : Rn // Lin[Rn,Rm].

We don’t want to assume any closed structure, so we uncurry,
thinking of the Jacobian as a map

J(f ) : Rn × Rn // Rm,

which is linear in the first variable.
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Cartesian left additive categories

To describe a category with a Jacobian, we need:

a category with products;

which has the ability to add any two maps in the same
hom-set;

with these structures being compatible (for example, the
projections preserve addition).

Call this a Cartesian left additive category.
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Definition

Definition

(Blute/Cockett/Seely) A Cartesian differential category consists
of a Cartesian left additive category X, which has for each map
f : X // Y , a map D[f ] : X × X // Y , such that:

1 D(f + g) = D(f ) + D(g),D(0) = 0;

2 D(〈f , g〉) = 〈Df ,Dg〉;
3 D(1) = π0,D(π0) = π0π0,D(π1) = π0π1;

4 D(fg) = 〈Df , π1f 〉D(g);

5 〈a + b, c〉D(f ) = 〈a, c〉D(f ) + 〈b, c〉D(f ), 〈0, c〉D(f ) = 0;

6 〈〈a, 0〉, 〈b, c〉〉D(D(f )) = 〈a, c〉D(f );

7 〈〈0, b〉, 〈c , d〉〉D(D(f )) = 〈〈0, c〉, 〈b, d〉〉D(D(f )).
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Linear maps

Definition

Say that a map f : X // Y is linear if D(f ) = π0f .

For example, x 7→ α · x .

Definition

Say that a map g : X × Y // Z is linear in the first variable if

〈π0, 0, π1, π2〉D(f ) = 〈π0, π2〉f .

The second last axiom says D(f ) : X × X // Y is itself linear
in its first variable.

If the Cartesian closed structure is closed, one asks that
ev : [X ,Y ]× X // Y be linear in its first variable
(Bucciarelli/Ehrhard/Manzonetto).
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Examples

Examples of Cartesian differential categories:

the category whose objects are Cartesian spaces Rn, maps are
smooth maps;

for any ring R, a category of “polynomials in R”: objects are
natural numbers, a map f : n //m is m polynomials of
degree n in R;

“convenient vector spaces” (Kriegl/Michor 1997) and smooth
maps between them form a Cartesian differential category
(Blute/Ehrhard/Tasson 2011);

models of differential lambda calculus (Ehrhard/Regnier
2003).
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Examples

Examples of Cartesian differential categories:

the category whose objects are Cartesian spaces Rn, maps are
smooth maps;

for any ring R, a category of “polynomials in R”: objects are
natural numbers, a map f : n //m is m polynomials of
degree n in R;

“convenient vector spaces” (Kriegl/Michor 1997) and smooth
maps between them form a Cartesian differential category
(Blute/Ehrhard/Tasson 2011);

models of differential lambda calculus (Ehrhard/Regnier
2003).



Introduction Cartesian differential categories Generalized CDCs Faà di Bruno de Rham cohomology Conclusion

A non-example

One problematic example, however:

The category whose objects are open subsets of Rn’s, maps
smooth maps, is not an example.

The derivative of a smooth map U ⊆ Rn // V ⊆ Rm does
not have type

D(f ) : U × U // V .

Instead, it has type

D(f ) : Rn × U // Rm.
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A non-example

One problematic example, however:

The category whose objects are open subsets of Rn’s, maps
smooth maps, is not an example.

The derivative of a smooth map U ⊆ Rn // V ⊆ Rm does
not have type

D(f ) : U × U // V .

Instead, it has type

D(f ) : Rn × U // Rm.



Introduction Cartesian differential categories Generalized CDCs Faà di Bruno de Rham cohomology Conclusion
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The domain of D(f ) plays two roles

The problem is the following:

in the type of the derivative

D(f ) : X × X // Y ,

the two X ’s play different roles:

the first X one thinks of as “vectors”, the second as “points”.

We need to formalize this.
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Generalized definition

Definition

A generalized Cartesian differential category consists of a
Cartesian category X, which has for each object X , an associated
monoid (L(X ),+X , eX ) (preserving products and idempotent), and
for each map f : X // Y , an associated map
D(f ) : L(X )× X // L(Y ), such that:

1 for each X , +X and eX are linear;

2 D(〈f , g〉) = 〈Df ,Dg〉;
3 D(1) = π0,D(π0) = π0π0,D(π1) = π0π1;

4 D(fg) = 〈Df , π1f 〉D(g);

5 〈a + b, c〉D(f ) = 〈a, c〉D(f ) + 〈b, c〉D(f ), 〈0, c〉D(f ) = 0;

6 〈〈a, 0〉, 〈b, c〉〉D(D(f )) = 〈a, c〉D(f );

7 〈〈0, b〉, 〈c , d〉〉D(D(f )) = 〈〈0, c〉, 〈b, d〉〉D(D(f )).
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Faà di bruno functor

Cockett and Seely showed a remarkable result: Cartesian
differential categories are (almost) the coalgebras for a certain
comonad.

Definition

Given a Cartesian left additive category X, define a Cartesian left
additive category Faà(X) with:

an object is a pair of objects (A,X );

a map f : (A,X ) // (B,Y ) consists of a sequence of maps
(fi )i∈N, where:

f0 : X // Y ;
f1 : A× X // Y (additive in the first variable);
fn : An × X // Y ; (additive in each of the first n variables).

composition of f0 is usual, f1 by chain rule, higher maps by
“higher-order” chain rule.
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Faà di bruno functor

Cockett and Seely showed a remarkable result: Cartesian
differential categories are (almost) the coalgebras for a certain
comonad.

Definition

Given a Cartesian left additive category X, define a Cartesian left
additive category Faà(X) with:
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Faà di bruno functor

Faà is an endofunctor on Cartesian left additive categories;

with an obvious co-unit η : Faà(X) // X;

and less obvious co-multiplication
δ : Faà(X) // Faà(Faà(X));

making it into a comonad.
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Cartesian differential categories as coalgebras

Every Cartesian differential category is a coalgebra
C : X // Faà(X), with:

C (X ) = (X ,X ),

C (f ) = (f ,D(f ),D2(f ),D3(f ), . . .).

Every coalgebra with C (X ) = (X ,X ) is a Cartesian differential
category, with derivative D(f ) = C (f )1.
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An alternate comonad

Definition

Given a category with products X, define a category Faà(X) with:

an object consists of a pair ((A,+, e),X ) (a monoid object
together with an arbitrary object),

a map f : (A,X ) // (B,Y ) consists of a sequence of maps
(fi )i∈N, where:

f0 : X // Y ;
f1 : A× X // Y (additive in the first variable);
fn : An × X // Y ; (additive in each of the first n variables).

composition of f0 is usual, f1 by chain rule, higher maps by
“higher-order” chain rule.
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an object consists of a pair ((A,+, e),X ) (a monoid object
together with an arbitrary object),

a map f : (A,X ) // (B,Y ) consists of a sequence of maps
(fi )i∈N, where:

f0 : X // Y ;
f1 : A× X // Y (additive in the first variable);
fn : An × X // Y ; (additive in each of the first n variables).

composition of f0 is usual, f1 by chain rule, higher maps by
“higher-order” chain rule.



Introduction Cartesian differential categories Generalized CDCs Faà di Bruno de Rham cohomology Conclusion
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Generalized Cartesian differential categories as coalgebras

Every generalized Cartesian differential category is a coalgebra
C : X // Faà(X), with:

C (X ) = ((L(X ),+x , ex),X ),

C (f ) = (f ,D(f ),D2(f ),D3(f ), . . .).

Even better:

Every coalgebra is a generalized Cartesian differential
category, with derivative D(f ) = C (f )1.

So every Cartesian category X has an associated generalized
Cartesian differential category Faà(X).
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category, with derivative D(f ) = C (f )1.

So every Cartesian category X has an associated generalized
Cartesian differential category Faà(X).
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Cartesian differential category:

reproduces the usual definition when applied to Cartesian
spaces;

reproduces the de Rham cohomology for convenient vector
spaces and their open subsets.
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Differential Forms

Fix an object R of the form R = L(R).

Definition

If X is a generalized Cartesian differential category and k ≥ 1, a
k-form is a map

ω : L(X )k × X // R

with:

ω is linear in each of its first k variables;

ω is alternating (equals 0 with any repeated variables).

A 0-form is a map ω : X // R which has an additive inverse.

Let Ωk(X ) be the set of k-forms of an object X ; they can be given
the structure of an Abelian group.
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de Rham complex

This gives a cochain complex:

each Ωk(X ) is a contravariant functor to Abelian groups;

there are natural transformations d : Ωk(X ) // Ωk+1(X )
(“exterior differentiation”) defined by

k∑
i=0

(−1)i 〈πi , π0, π1, . . . π̂i , πi+1 . . . πk〉DX (ω)

which have d2 = 0;

The resulting cohomology is de Rham cohomology.

Note: this uses all the axioms of a generalized Cartesian
differential category!
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This generalization is, in many respects, more natural than the
original formulation:

allows for examples involving open subsets;

more natural as the coalgebras for a certain comonad;

while more general, it is still powerful enough to define
constructions such as de Rham cohomology.
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