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Overview

Tangent categories are a minimal categorical setting for differential
geometry.

Tangent categories span a wide variety of examples from differential
geometry and algebraic geometry to abstract homotopy theory
(functor calculus).

Many structures can be defined in a tangent category, including
vector bundles, differential forms, and connections.

In this talk the focus is on how to define and work with the
cotangent bundle in tangent categories.

Plan:

1 Review of tangent categories and differential bundles.

2 Define linear dualization in a tangent category and how this gives a
cotangent bundle.

3 Can we axiomatically define a cotangent category?
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Tangent category definition

Tangent categories abstract the structure of the tangent bundle functor
on the category of smooth manifolds.

Definition (Rosický 1984, modified Cockett/Cruttwell 2014)

A tangent category consists of a category X with:

an endofunctor T : X −→ X;
a natural transformation p : T −→ 1X;

for each M, the pullback of n copies of pM : TM −→ M along itself
exists (and is preserved by each Tm), call this pullback TnM;

for each M ∈ X, pM : TM −→ M has the structure of a commutative
monoid in the slice category X/M, in particular there are natural
transformations + : T2 −→ T , 0 : 1X −→ T ;
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Tangent category definition (continued)

Definition

(canonical flip) there is a natural transformation c : T 2 −→ T 2 which
preserves additive bundle structure and satisfies c2 = 1;

(vertical lift) there is a natural transformation ℓ : T −→ T 2 which
preserves additive bundle structure and satisfies ℓc = ℓ;

various other coherence equations for ℓ and c ;

(tangent spaces have trivial tangent bundle) the following is a
pullback:

T2M
ν //

π0pM

��

T 2M

T (pM )

��
M

0M
// TM

where ν = ⟨π00M , π1ℓ⟩T (+).
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Examples

Smooth manifolds with their tangent bundle.

Convenient manifolds (a certain type of infinite-dimensional
manifold) with their kinematic tangent bundle.

The infinitesimally linear objects in a model of synthetic differential
geometry (SDG)

The category of C∞-rings.

Commutative ri(n)gs and its opposite, as well as various other
categories in algebraic geometry.

(MacAdam) The category of all small categories with finite limits is
a tangent category, where

T (X) = Beck modules in X (Abelian group objects in X)

Abelian functor calculus gives a tangent category, and Goodwillie
functor calculus gives an (infinity) tangent category.

The vector fields in any tangent category form a new tangent
category (as do many other constructions).



Introduction Tangent categories Linear dualization and the cotangent bundle Conclusion

Differential bundles

The analog of vector bundles in a tangent category are:

Definition (Cockett/Cruttwell 2015)

A differential bundle in a tangent category consists of an additive
bundle (q : E −→ M, σ, ζ) and a map λ : E −→ TE such that the
following is a pullback:

E2
ν //

π0q

��

TE

T (q)

��
M

0M
// TM

where E2 is the pullback of q along itself, and ν = ⟨π00E , π1λ⟩T (σ).

A differential bundle E over 1 has

TE ∼= E × E .

(MacAdam) In the tangent category of smooth manifolds, differential
bundles = vector bundles (with their local triviality condition!)



Introduction Tangent categories Linear dualization and the cotangent bundle Conclusion

Differential bundles continued

Definition

A linear morphism of differential bundles from (q : E −→ M, σ, ζ, λ)
to (q′ : E ′ −→ M ′, σ′, ζ ′, λ′) consists of a morphism in the arrow category
(f , f ′) which preserve the λ’s:

E
f ′ //

q

��

E ′

q′

��
M

f
// M ′

E
f ′ //

λ

��

E ′

λ′

��
TE

T (f ′)
// TE ′

call the associated category Lin(X).

In the tangent category of smooth manifolds, morphisms of
differential bundles = linear bundle morphisms.

With some additional pullback assumptions, Lin(X) is a fibration
over the base category X.
T can be seen as a functor X −→ Lin(X).
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Cotangent bundle?

Recall that the cotangent bundle T ∗M is defined by taking the dual of
each of the tangent spaces of M.

The cotangent bundle is not an endofunctor on the category of
smooth manifolds.

It does give an endofunctor when restricted to etale maps...but not
general smooth maps.

It does give a functor to a different category, though: the dual of the
fibration of differential/vector bundles.
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The dual fibration

Any fibration F : A −→ B has an associated dual fibration given by taking
the opposite category in each fibre. For example:

Consider the simple fibration over a Cartesian category which has
objects pairs (A,A′) with maps (f , f ′) : (A,A′) −→ (B,B ′) such that

f : A −→ B and f ′ : A× A′ −→ B ′

Its dual fibration has objects pairs (A,A′) with maps (f , f ∗) : (A,A′)
−→ (B,B ′) such that

f : A −→ B and f ∗ : A× B ′ −→ A′.

This is also known as the category of lenses, and has appeared in
many places (database theory, functional programming, dialectica
categories, machine learning): its morphisms have a very useful
bidirectional nature.
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More dual fibrations

Recall that the arrow category/codomain fibration of a category X
with pullbacks has objects maps q : E −→ M and morphisms pairs
(f , f ′) which give commuting squares

E
f ′ //

q

��

E ′

q′

��
M

f
// M ′

Its dual fibration again has objects maps q : E −→ M but now a
morphism is a pair (f , f ∗) with

f : M −→ M ′ and f ∗ : E ′ ×M′ M −→ E

(This is sometimes called the category of dependent lenses: notice
it again has a bidirectional nature!)

The dual of the fibration Lin(X), Lin∗(X) is the same as above,
except now the objects are differential bundles, and f ∗ must be
linear.
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Linear dualization

Definition

If X is a tangent category, a linear dualization on X consists of a
fibration functor (ie., it preserves Cartesian arrows)

Lin(X) D //

""E
EE

EE
EE

EE
Lin∗(X)

{{xx
xx
xx
xx
x

X

which is compatible with the tangent structure, that is

Lin(X) D //

T̄

��

Lin∗(X)

T̃
��

Lin(X) D // Lin∗(X)

commutes (where T̄ and T̃ are functors induced by T ).
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Cotangent bundle functor

In any tangent category X with a linear dualization D, we get an
associated functor T ∗ by composing T with D:

X T−−→ Lin(X) D−−→ Lin∗(X).

This assigns to each M its “cotangent bundle” q : T ∗M −→ M, and
assigns to a map f : M −→ N its “pullback” (as it is called in differential
geometry)

T ∗(f ) : T ∗N ×N M −→ T ∗M

(in other terminology, it assigns to each f a dependent lens).
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Pullback of covector fields

For the next few slides, we’ll assume X is a tangent category with a linear
dualization.

Definition

Define a covector field on M in X to be a map ω : M −→ T ∗(M) which
is a section of q : T ∗(M) −→ M.

It is a standard result that covector fields can be “pulled back”, and this
also holds in our setting:

Lemma

If f : M −→ N is a map and ω : N −→ T ∗(N) is a covector field on N,
then

M
⟨f ω, 1⟩−−−−−→ T ∗(N)×N M

T∗(f )−−−−→ T ∗(M)

is a covector field on M.
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Cotangent bundle functor on etale maps

We also get an induced endofunctor on the base category when restricted
to etale maps maps:

In any tangent category, define a etale map to be a map f : M
−→ N such that

TM
T (f ) //

pM

��

TN

pN

��
M

f
// N

is a pullback (this agrees with the usual notion in smooth manifolds).

That is, (f ,T (f )) is a Cartesian arrow in the fibration Lin(X), so D
of it is a Cartesian arrow in Lin∗(X)
But Cartesian arrows in a dual fibration correspond to Cartesian
arrows in the original fibration, so applying the above to an etale
map gives a morphism of Lin(X), and taking the top component of
this map gives an endofunctor

T ∗ : etale(X) −→ etale(X).
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Some other structure on the cotangent bundle

There are some other results one gets in this abstract setup:

The canonical flip c : T 2 −→ T 2 gives linear isomorphisms

T 2M
cM //

T (pm)

��

T 2M

pTM

��
TM

1TM
// TM

Applying D to this gives isomorphisms

T (T ∗M) ∼= T ∗(TM)

Can build the Liouville-Hamilton vector field on the cotangent
bundle: a vector field on T ∗M, ie., a map

T ∗(M) −→ T (T ∗(M))

Can build the canonical covector field on the cotangent bundle, ie., a
map

T ∗(M) −→ T ∗(T ∗(M))
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Cotangent categories?

Can we directly axiomatize a “category equipped with a cotangent
bundle”?

Why? In many places the cotangent bundle is seen as a more
natural structure than the tangent bundle, so it might be nice to
axiomatize it directly.

We could define a cotangent category as a category X equipped with
a functor

T ∗ : X −→ AdBun∗(X)

where AdBun(X) is the category of additive bundles in X.
Some of the other structure is less clear, though: for example, as we
saw on the previous slide, the canonical flip gives an isomorphism

T (T ∗M) ∼= T ∗(TM)

not an isomorphism T ∗(T ∗(M)) ∼= T ∗(T ∗(M)).

Also not clear how to define the analog of differential bundles
directly in the case cotangent structure.
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Conclusions

In conclusion:

A tangent category equipped with a linear dualization functor has an
associated cotangent bundle functor, and the technology of the dual
fibration is very helpful in defining this abstractly.

Some standard results about the cotangent bundle can be recovered
from this abstract setup (and some non-standard results immediately
follow as well).

It is not yet clear (to us) how to define a cotangent category, but
we’re still thinking about it.
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