▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Towards cotangent categories

Geoff Cruttwell Mount Allison University

Based on joint work with J.S. Lemay

MCA 2021 Special session in Categories and Topology July 15th, 2021

Introduction	Tangent categories	Linear dualization and the cotangent bundle	Conclusion
•			
Overview			

Tangent categories are a *minimal* categorical setting for differential geometry.

- Tangent categories span a wide variety of examples from differential geometry and algebraic geometry to abstract homotopy theory (functor calculus).
- Many structures can be defined in a tangent category, including vector bundles, differential forms, and connections.
- In this talk the focus is on how to define and work with the *cotangent* bundle in tangent categories.

Plan:

- Review of tangent categories and differential bundles.
- Oefine *linear dualization* in a tangent category and how this gives a cotangent bundle.
- Son we axiomatically define a *cotangent category*?

	•0000	00000000	00
langent	category definition	on	

Tangent categories abstract the structure of the tangent bundle functor on the category of smooth manifolds.

Definition (Rosický 1984, modified Cockett/Cruttwell 2014)

A tangent category consists of a category X with:

- an endofunctor $T : \mathbb{X} \to \mathbb{X}$;
- a natural transformation $p: T \rightarrow 1_{\mathbb{X}}$;
- for each M, the pullback of n copies of $p_M : TM \to M$ along itself exists (and is preserved by each T^m), call this pullback T_nM ;
- for each M ∈ X, p_M : TM → M has the structure of a commutative monoid in the slice category X/M, in particular there are natural transformations + : T₂ → T, 0 : 1_X → T;

Introduction	Tangent categories	Linear dualization and the cotangent bundle	Conclusion
O	0●000		OO
Tangent of	category definition	(continued)	

Definition

- (canonical flip) there is a natural transformation $c : T^2 \rightarrow T^2$ which preserves additive bundle structure and satisfies $c^2 = 1$;
- (vertical lift) there is a natural transformation $\ell : T \rightarrow T^2$ which preserves additive bundle structure and satisfies $\ell c = \ell$;
- various other coherence equations for ℓ and c;
- (tangent spaces have trivial tangent bundle) the following is a pullback:

$$\begin{array}{cccc}
T_2 M & \xrightarrow{\nu} & T^2 M \\
 \pi_0 p_M & & & \downarrow \\
 m_{-0_M} & & & \downarrow \\
 M & \xrightarrow{0_M} & TM \\
\end{array}$$

where $\nu = \langle \pi_0 0_M, \pi_1 \ell \rangle T(+)$.

Introduction	Tangent categories	Linear dualization and the cotangent bundle	Conclusion
	00000	00000000	00
Examples			

- Smooth manifolds with their tangent bundle.
- Convenient manifolds (a certain type of infinite-dimensional manifold) with their *kinematic* tangent bundle.
- The infinitesimally linear objects in a model of synthetic differential geometry (SDG)
- The category of C^{∞} -rings.
- Commutative ri(n)gs and its opposite, as well as various other categories in algebraic geometry.
- (MacAdam) The category of all small categories with finite limits is a tangent category, where

T(X) = Beck modules in X (Abelian group objects in X)

- Abelian functor calculus gives a tangent category, and Goodwillie functor calculus gives an (infinity) tangent category.
- The vector fields in any tangent category form a new tangent category (as do many other constructions).

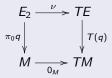
Introduction	Tangent categories	Linear dualization and the cotangent bundle	Conclusion
0	00000	00000000	00
D:00	1. A		

Differential bundles

The analog of vector bundles in a tangent category are:

Definition (Cockett/Cruttwell 2015)

A differential bundle in a tangent category consists of an additive bundle $(q: E \rightarrow M, \sigma, \zeta)$ and a map $\lambda: E \rightarrow TE$ such that the following is a pullback:



where E_2 is the pullback of q along itself, and $\nu = \langle \pi_0 0_E, \pi_1 \lambda \rangle T(\sigma)$.

A differential bundle E over 1 has

$$TE \cong E \times E.$$

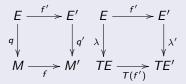
(MacAdam) In the tangent category of smooth manifolds, differential bundles = vector bundles (with their local triviality condition!), (=, =)

Introduction	Т	angent categories	Linear dualization and the cotangent bundle	Conclusion
	C	0000	00000000	00
-				

Differential bundles continued

Definition

A linear morphism of differential bundles from $(q : E \to M, \sigma, \zeta, \lambda)$ to $(q' : E' \to M', \sigma', \zeta', \lambda')$ consists of a morphism in the arrow category (f, f') which preserve the λ 's:



call the associated category Lin(X).

- In the tangent category of smooth manifolds, morphisms of differential bundles = linear bundle morphisms.
- With some additional pullback assumptions, Lin(X) is a fibration over the base category X.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• T can be seen as a functor $\mathbb{X} \to \text{Lin}(\mathbb{X})$.

	Tangent categories	Linear dualization and the cotangent bundle	Conclusion
		00000000	
Cotanger	nt bundle?		

Recall that the cotangent bundle T^*M is defined by taking the *dual* of each of the tangent spaces of M.

- The cotangent bundle *is not* an endofunctor on the category of smooth manifolds.
- It does give an endofunctor when restricted to etale maps...but not general smooth maps.
- It does give a functor to a different category, though: the *dual* of the fibration of differential/vector bundles.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction	Tangent categories	Linear dualization and the cotangent bundle	Conclusion
		0000000	
The dual	fibration		

Any fibration $F : \mathbb{A} \to \mathbb{B}$ has an associated **dual** fibration given by taking the opposite category in each fibre. For example:

• Consider the simple fibration over a Cartesian category which has objects pairs (A, A') with maps $(f, f') : (A, A') \rightarrow (B, B')$ such that

 $f: A \rightarrow B$ and $f': A \times A' \rightarrow B'$

• Its dual fibration has objects pairs (A, A') with maps $(f, f^*) : (A, A') \rightarrow (B, B')$ such that

$$f: A \rightarrow B$$
 and $f^*: A \times B' \rightarrow A'$.

• This is also known as the category of *lenses*, and has appeared in many places (database theory, functional programming, dialectica categories, machine learning): its morphisms have a very useful *bidirectional* nature.

troduction	Tangent categories	Linear dualization and the cotangent bundle	Conclusion
	00000	0000000	00
4	1.01		

More dual fibrations

• Recall that the arrow category/codomain fibration of a category X with pullbacks has objects maps $q: E \to M$ and morphisms pairs (f, f') which give commuting squares

 Its dual fibration again has objects maps q : E → M but now a morphism is a pair (f, f*) with

$$f: M \to M'$$
 and $f^*: E' \times_{M'} M \to E$

(This is sometimes called the category of **dependent** lenses: notice it again has a bidirectional nature!)

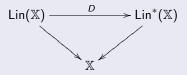
 The dual of the fibration Lin(X), Lin*(X) is the same as above, except now the objects are differential bundles, and f* must be linear.

Introduction	Tangent categories	Linear dualization and the cotangent bundle	Conclusion
		00000000	

Linear dualization

Definition

If $\mathbb X$ is a tangent category, a **linear dualization on** $\mathbb X$ consists of a fibration functor (ie., it preserves Cartesian arrows)



which is compatible with the tangent structure, that is

$$\begin{array}{c|c} \mathsf{Lin}(\mathbb{X}) & \stackrel{D}{\longrightarrow} \mathsf{Lin}^{*}(\mathbb{X}) \\ \bar{\tau} & & & \\ \bar{\tau} & & & \\ \mathsf{Lin}(\mathbb{X}) & \stackrel{D}{\longrightarrow} \mathsf{Lin}^{*}(\mathbb{X}) \end{array}$$

commutes (where \overline{T} and \widetilde{T} are functors induced by T).

Introduction	Tangent categories	Linear dualization and the cotangent bundle	Conclusion
	00000	00000000	00

Cotangent bundle functor

In any tangent category X with a linear dualization D, we get an associated functor T^* by composing T with D:

$$\mathbb{X} \xrightarrow{T} \mathsf{Lin}(\mathbb{X}) \xrightarrow{D} \mathsf{Lin}^*(\mathbb{X}).$$

This assigns to each M its "cotangent bundle" $q: T^*M \to M$, and assigns to a map $f: M \to N$ its "pullback" (as it is called in differential geometry)

$$T^*(f): T^*N \times_N M \to T^*M$$

(in other terminology, it assigns to each f a dependent lens).

Introduction	Tangent categories	Linear dualization and the cotangent bundle	Conclusion
	00000	000000000	00

Pullback of covector fields

For the next few slides, we'll assume $\mathbb X$ is a tangent category with a linear dualization.

Definition

Define a **covector field on** M in \mathbb{X} to be a map $\omega : M \to T^*(M)$ which is a section of $q : T^*(M) \to M$.

It is a standard result that covector fields can be "pulled back", and this also holds in our setting:

Lemma

If $f: M \to N$ is a map and $\omega: N \to T^*(N)$ is a covector field on N, then

$$M \xrightarrow{\langle f\omega, 1 \rangle} T^*(N) \times_N M \xrightarrow{T^*(f)} T^*(M)$$

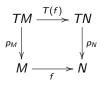
is a covector field on M.

Introduction	Tangent categories	Linear dualization and the cotangent bundle	Conclusion
	00000	000000000	00
<u> </u>			

Cotangent bundle functor on etale maps

We also get an induced endofunctor on the base category when restricted to etale maps maps:

- In any tangent category, define a **etale** map to be a map f: M
 - \rightarrow N such that



is a pullback (this agrees with the usual notion in smooth manifolds).

- That is, (f, T(f)) is a Cartesian arrow in the fibration Lin(X), so D of it is a Cartesian arrow in Lin*(X)
- But Cartesian arrows in a dual fibration correspond to Cartesian arrows in the original fibration, so applying the above to an etale map gives a morphism of Lin(X), and taking the top component of this map gives an endofunctor

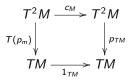
$$T^*: etale(\mathbb{X}) \to etale(\mathbb{X}).$$

Tangent categoriesLinear dualization and the cotangent bundleConclusion0000000000000000

Some other structure on the cotangent bundle

There are some other results one gets in this abstract setup:

• The canonical flip $c: T^2
ightarrow T^2$ gives linear isomorphisms



Applying D to this gives isomorphisms

$$T(T^*M)\cong T^*(TM)$$

• Can build the Liouville-Hamilton vector field on the cotangent bundle: a vector field on T^*M , ie., a map

$$T^*(M) \to T(T^*(M))$$

• Can build the canonical covector field on the cotangent bundle, ie., a map

$$T^*(M) \to T^*(T^*(M))$$

Cotangent categories?

Can we directly axiomatize a "category equipped with a cotangent bundle"?

- Why? In many places the cotangent bundle is seen as a more natural structure than the tangent bundle, so it might be nice to axiomatize it directly.
- $\bullet\,$ We could define a cotangent category as a category $\mathbb X$ equipped with a functor

$$T^*: \mathbb{X} \to \mathsf{AdBun}^*(\mathbb{X})$$

where AdBun(X) is the category of additive bundles in X.

• Some of the other structure is less clear, though: for example, as we saw on the previous slide, the canonical flip gives an isomorphism

$$T(T^*M) \cong T^*(TM)$$

not an isomorphism $T^*(T^*(M)) \cong T^*(T^*(M))$.

• Also not clear how to define the analog of differential bundles directly in the case cotangent structure.

	Tangent categories	Linear dualization and the cotangent bundle	Conclusion		
			•0		
Conclusions					

In conclusion:

- A tangent category equipped with a *linear dualization* functor has an associated cotangent bundle functor, and the technology of the dual fibration is very helpful in defining this abstractly.
- Some standard results about the cotangent bundle can be recovered from this abstract setup (and some non-standard results immediately follow as well).
- It is not yet clear (to us) how to define a cotangent category, but we're still thinking about it.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

	Tangent categories	Linear dualization and the cotangent bundle	Conclusion
	00000	00000000	00
References			

- (1984) Rosický, J. Abstract tangent functors. *Diagrammes*, 12, Exp. No. 3.
- (2014) Cockett, R. and Cruttwell, G. **Differential structure, tangent structure, and SDG**. *Applied Categorical Structures*, Vol. 22 (2), pg. 331–417.
- (2015) Kock, A. The dual fibration in elementary terms. arXiv:1501.01947.
- (2021) MacAdam, B. Vector bundles and differential bundles in the category of smooth manifolds. *Applied categorical structures*, Vol. 29, pg. 285–310.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●