Synthetic differential geometry 00000

A tale of two tangent bundles Octoberfest 2011

Geoff Cruttwell University of Ottawa

October 22nd-23rd, 2011

Introduction •00	Differential categories	Synthetic differential geometry	Conclusion 00
It was the b	est of times		

Throughout the 1980's and 1990's, Kriegl and Michor worked on a framework that would allow them to discuss smooth manifolds modelled on infinite dimensional vector spaces.

Definition

A convenient vector space is a locally convex vector space *E* such that any smooth curve $\mathbb{R} \xrightarrow{c} E$ has a smooth antiderivative.

• This condition is equivalent to a number of other important conditions.

Introduction ●00	Differential categories	Synthetic differential geometry	Conclusion 00
It was the l	nest of times		

Throughout the 1980's and 1990's, Kriegl and Michor worked on a framework that would allow them to discuss smooth manifolds modelled on infinite dimensional vector spaces.

Definition

A convenient vector space is a locally convex vector space E such that any smooth curve $\mathbb{R} \xrightarrow{c} E$ has a smooth antiderivative.

- This condition is equivalent to a number of other important conditions.
- One defines a map f : E → F to be smooth if it maps smooth curves to smooth curves.

Introduction ●00	Differential categories	Synthetic differential geometry	Conclusion 00
It was the	hest of times		

Throughout the 1980's and 1990's, Kriegl and Michor worked on a framework that would allow them to discuss smooth manifolds modelled on infinite dimensional vector spaces.

Definition

A convenient vector space is a locally convex vector space E such that any smooth curve $\mathbb{R} \xrightarrow{c} E$ has a smooth antiderivative.

- This condition is equivalent to a number of other important conditions.
- One defines a map f : E → F to be smooth if it maps smooth curves to smooth curves.

They build a large amount of theory on "convenient manifolds": spaces that locally look like a convenient vector space with all transition maps smooth.

Introduction 000	Differential categories	Synthetic differential geometry	Conclusion 00
The tangent	bundle		

There are two tangent bundle definitions:

Definition

If *E* is a convenient vector space, a **kinematic tangent vector** is an equivalence class of smooth curves $f : \mathbb{R} \longrightarrow E$ with $f \sim g$ if f(0) = g(0) and f'(0) = g'(0). Locally, the **kinematic tangent bundle** of a convenient manifold *M* is its set of kinematic tangent vectors.

Introduction o●o	Differential categories	Synthetic differential geometry	Conclusion 00
The tangent	bundle		

There are two tangent bundle definitions:

Definition

If *E* is a convenient vector space, a **kinematic tangent vector** is an equivalence class of smooth curves $f : \mathbb{R} \longrightarrow E$ with $f \sim g$ if f(0) = g(0) and f'(0) = g'(0). Locally, the **kinematic tangent bundle** of a convenient manifold *M* is its set of kinematic tangent vectors.

Definition

Let x be a point in a smooth manifold M. An **operational** tangent vector at x is a linear map $\alpha : C^{\infty}(M) \longrightarrow \mathbb{R}$ which satisfies

$$\alpha(fg) = \alpha(f) \cdot g(x) + \alpha(g) \cdot f(x).$$

The set of all operational tangent vectors over all points of M forms the **operational tangent bundle** DM.

Introduction 00•	Differential categories	Synthetic differential geometry	Conclusion 00
It was the wo	orst of times.		

• For a smooth convenient manifold, these definitions may give different results!

Introduction	Differential categories	Synthetic differential geometry	Conclusion		
000	000000	00000	00		
It was the worst of times					

- For a smooth convenient manifold, these definitions may give different results!
- This difference causes some headaches: for example, should a vector field be a section of the kinematic or the operational tangent bundle?

Introduction 00●	Differential categories	Synthetic differential geometry	Conclusion 00
It was the wo	orst of times.		

- For a smooth convenient manifold, these definitions may give different results!
- This difference causes some headaches: for example, should a vector field be a section of the kinematic or the operational tangent bundle?
- As another example, the authors are forced to consider 12 (!) different definitions of differential form, some based on the kinematic tangent bundle, some on the operational.

- For a smooth convenient manifold, these definitions may give different results!
- This difference causes some headaches: for example, should a vector field be a section of the kinematic or the operational tangent bundle?
- As another example, the authors are forced to consider 12 (!) different definitions of differential form, some based on the kinematic tangent bundle, some on the operational.
- We will investigate which definition is "right" via differential categories and synthetic differential geometry.

Introduction 000	Differential categories ●000000	Synthetic differential geometry	Conclusion
Differential ca	ategories		

We'll start by looking at conveninent smooth manifolds via a definition of Blute, Cockett and Seely (2007):

Definition

A cartesian differential category consists of a cartesian left additive category which has, for each map $f : X \longrightarrow Y$, a map $D[f] : X \times X \longrightarrow Y$ satisfying seven axioms (chain rule, D preserves addition, symmetry of partial derivatives, etc.)

Introduction	Differential categories	Synthetic differential geometry	Conclusion
000	•00000		00
Differential ca	ategories		

We'll start by looking at conveninent smooth manifolds via a definition of Blute, Cockett and Seely (2007):

Definition

A cartesian differential category consists of a cartesian left additive category which has, for each map $f : X \longrightarrow Y$, a map $D[f] : X \times X \longrightarrow Y$ satisfying seven axioms (chain rule, D preserves addition, symmetry of partial derivatives, etc.)

- Think of *D* as the Jacobian, evaluted at the second *X*, in the direction of the first *X*.
- As an example of the axioms, the chain rule is given by asking that $D[fg] = \langle D[f], \pi_1 f \rangle D[g]$.

Introduction 000	Differential categories ○●○○○○	Synthetic differential geometry	Conclusion
Fxamples	of cartsian diff	erential categories	

• Cartesian spaces: objects natural numbers, a map $f : n \longrightarrow m$ is a smooth map $f : \mathbb{R}^n \longrightarrow \mathbb{R}^m$.

Introduction	Differential categories	Synthetic differential geometry	Conclusion
000	00000	00000	00
Evamples	of cartsian differ	ential categories	

- Cartesian spaces: objects natural numbers, a map $f : n \longrightarrow m$ is a smooth map $f : \mathbb{R}^n \longrightarrow \mathbb{R}^m$.
- Examples from differential linear logic.

Introduction	Differentia
	000000

Examples of cartsian differential categories

categories

- Cartesian spaces: objects natural numbers, a map $f : n \longrightarrow m$ is a smooth map $f : \mathbb{R}^n \longrightarrow \mathbb{R}^m$.
- Examples from differential linear logic.
- Cockett and Seely (2011): cartesian differential categories are comonadic over left additive cartesian categories, so every left additive cartesian category has an associated cofree cartesian differential category (a slightly generalized version may be comonadic over cartesian categories!).

Introd	

Differential categories

Synthetic differential geometry

Conclusion 00

Examples of cartsian differential categories

- Cartesian spaces: objects natural numbers, a map f : n→m is a smooth map f : ℝⁿ→ℝ^m.
- Examples from differential linear logic.
- Cockett and Seely (2011): cartesian differential categories are comonadic over left additive cartesian categories, so every left additive cartesian category has an associated cofree cartesian differential category (a slightly generalized version may be comonadic over cartesian categories!).
- Most relevant for us: Blute, Erhard and Tasson (2011) showed convenient vector spaces and smooth maps are a cartesian differential category.

Introduction	Differential categories	Synthetic differential geometry	Conclusion
	000000		
Differenti	al ractriction cator		
I JIIIerenii,			

Introduction 000	Differential categories	Synthetic differential geometry	Conclusion 00
Differentia	al restriction categ	ories	

Definition

A **restriction category** is a category which has for each map $f: X \longrightarrow Y$ a map $\overline{f}: X \longrightarrow X$ satisfying four axioms, representing the "domain of definition" of f.

Introduction 000	Differential categories	Synthetic differential geometry	Conclusion 00
Differentia	l restriction categ	ories	

Definition

A **restriction category** is a category which has for each map $f: X \longrightarrow Y$ a map $\overline{f}: X \longrightarrow X$ satisfying four axioms, representing the "domain of definition" of f.

• Using a different name for this structure, Grandis (1989) showed that starting with any suitably well-behaved restriction category, one can build a category of manifolds.

Introduction	Differential categories	Synthetic differential geometry	Conclusion
000	00●000		00
Differentia	l restriction categ	ories	

Definition

A **restriction category** is a category which has for each map $f: X \longrightarrow Y$ a map $\overline{f}: X \longrightarrow X$ satisfying four axioms, representing the "domain of definition" of f.

- Using a different name for this structure, Grandis (1989) showed that starting with any suitably well-behaved restriction category, one can build a category of manifolds.
- But what do we get when the restriction category has compatible differential structure?

Introduction 000	Differential categories	Synthetic differential geometry	Conclusion
Tangent str	ucture		

If we start with a differential restriction category (Cockett, Cruttwell, Gallagher 2011) and build its category of manifolds, we get the following structure (Cruttwell and Cockett 2011):

Introduction	Differential categories	Synthetic differential geometry	Conclusion
000	000●00		00
Tangent strue	cture		

If we start with a differential restriction category (Cockett, Cruttwell, Gallagher 2011) and build its category of manifolds, we get the following structure (Cruttwell and Cockett 2011):

Definition

Tangent structure for a cartesian category X consists of an endofunctor $T : X \longrightarrow X$ with:

- a natural map $TX \xrightarrow{\rho_X} X$ which has the structure of a commutative monoid in $\mathbb{X} \setminus X$ for each X;
- T preserves products and certain pullbacks;
- two natural transformation $I: T \longrightarrow T^2$ ("vertical lift") and $c: T^2 \longrightarrow T^2$ ("canonical flip") which preserve the commutative monoid structure.

There is a sense in which the properties of this tangent bundle are equivalent to the properties of a cartesian differential category.

Differential categories

Synthetic differential geometry

Conclusion

Tangent structure on convenient manifolds is the kinematic tangent bundle

So, our general theory builds a tangent bundle functor on the category of convenient manifolds: but which one?

Differential categories $0000 \bullet 0$

Synthetic differential geometry 00000

Conclusion

Tangent structure on convenient manifolds is the kinematic tangent bundle

So, our general theory builds a tangent bundle functor on the category of convenient manifolds: but which one?

- The kinematic tangent bundle is exactly the one we get with our general theory.
- In essence, a kinematic tangent vector is simply a choice of two points: c(0) and c'(0), and this matches with differential categories, with derivative D[f]: X × X → Y.
- Thus our general theory immediately gives us a host of results about the kinematic tangent bundle.

Differential categories

Synthetic differential geometry 00000

Conclusion

The operational tangent bundle is not even tangent structure

The kinematic tangent bundle is directly built out of the differential structure of conveniennt vector spaces. Is the operational tangent bundle at least tangent structure?

Differential categories

Synthetic differential geometry 00000

Conclusion

The operational tangent bundle is not even tangent structure

The kinematic tangent bundle is directly built out of the differential structure of conveniennt vector spaces. Is the operational tangent bundle at least tangent structure?

 Somewhat buried in Kriegl and Michor's book: the operational tangent bundle does not preserve products.

Differential categories

Synthetic differential geometry $_{\rm OOOOO}$

Conclusion

The operational tangent bundle is not even tangent structure

The kinematic tangent bundle is directly built out of the differential structure of conveniennt vector spaces. Is the operational tangent bundle at least tangent structure?

- Somewhat buried in Kriegl and Michor's book: the operational tangent bundle does not preserve products.
- There appears to be no vertical lift.

Differential categories

Synthetic differential geometry 00000

Conclusion

The operational tangent bundle is not even tangent structure

The kinematic tangent bundle is directly built out of the differential structure of conveniennt vector spaces. Is the operational tangent bundle at least tangent structure?

- Somewhat buried in Kriegl and Michor's book: the operational tangent bundle does not preserve products.
- There appears to be no vertical lift.

Thus, for differential categories and tangent structure, the kinematic tangent bundle is the right tangent bundle; the operational tangent bundle is simply "something else".

Introduction	Differential categories	Synthetic differential geometry	Conclusion
000		•0000	00
Synthetic diff	ferential geometry		

In contrast to the low-level approach of differential categories is synthetic differential geometry, which defines a "smooth topos" as a topos with a special "infinitesimal object" D.

Definition

For any object X in a smooth topos, one can define its tangent bundle as X^D .

Introduction	Differential categories	Synthetic differential geometry	Conclusion
000		●0000	00
Synthetic di	fferential geom	ietry	

In contrast to the low-level approach of differential categories is synthetic differential geometry, which defines a "smooth topos" as a topos with a special "infinitesimal object" D.

Definition

For any object X in a smooth topos, one can define its tangent bundle as X^D .

When restricted to the "infinitesimally linear" objects, this endofunctor is tangent structure (as defined earlier).

 In the early 1980's, Anders Kock showed that the category of convenient vector spaces fully and faithfully embeds inside a model of SDG, the "Cahiers" or "Dubuc" topos.

Differential categories

Synthetic differential geometry

Conclusion 00

SDG and smooth convenient manifolds

- In the early 1980's, Anders Kock showed that the category of convenient vector spaces fully and faithfully embeds inside a model of SDG, the "Cahiers" or "Dubuc" topos.
- It is easy to show that this embedding extends to smooth convenient manifolds as well.

Synthetic differential geometry 0000

SDG and smooth convenient manifolds

- In the early 1980's, Anders Kock showed that the category of convenient vector spaces fully and faithfully embeds inside a model of SDG, the "Cahiers" or "Dubuc" topos.
- It is easy to show that this embedding extends to smooth convenient manifolds as well.
- So, we can ask the question: which tangent bundle, if either, does the "synthetic" tangent bundle correspond to?

Introduction	Differential categories	Synthetic differential geometry	Conclusion
000		00●00	00
Synthetic $I =$	Operational		

• Suppose one has a fully faithful embedding of smooth convenient manifolds into a smooth topos which preserves products. Then the synthetic tangent bundle cannot equal the operational tangent bundle, as the synthetic tangent bundle preserves products $((X \times Y)^D \cong X^D \times Y^D)$, while the operational one does not!

Introduction 000	Differential categories	Synthetic differential geometry	Conclusion 00
Synthetic !=	Operational		

- Suppose one has a fully faithful embedding of smooth convenient manifolds into a smooth topos which preserves products. Then the synthetic tangent bundle cannot equal the operational tangent bundle, as the synthetic tangent bundle preserves products $((X \times Y)^D \cong X^D \times Y^D)$, while the operational one does not!
- Since Kock's embedding preserves products, the synthetic tangent bundle cannot be the operational tangent bundle.

But could the synthetic tangent bundle be the kinematic tangent bundle?

Introduction 000	Differential categories	Synthetic differential geometry 000●0	Conclusion
Kock's ember	ding is not the st	andard one	

• Typical models of SDG are sheaves on a category of $C^\infty\text{-}\mathsf{algebras}.$

Introduction 000	Differential categories	Synthetic differential geometry 000●0	Conclusion
Kock's embed	ding is not the st	andard one	

- Typical models of SDG are sheaves on a category of $C^\infty\text{-algebras}.$
- The standard embedding of smooth finite dimensional manifolds into a model of SDG is given by mapping a manifold M directly to its algebra $C^{\infty}(M)$, then by Yoneda into the sheaf category.

Introduction 000	Differential categories	Synthetic differential geometry	Conclusion 00
Kock's embed	dding is not the sta	andard one	

- Typical models of SDG are sheaves on a category of $C^\infty\text{-algebras}.$
- The standard embedding of smooth finite dimensional manifolds into a model of SDG is given by mapping a manifold M directly to its algebra $C^{\infty}(M)$, then by Yoneda into the sheaf category.
- This is where the operational tangent bundle comes from: as maps C[∞](M) → D = Spec(ℝ[ε]).

Introduction 000	Differential cat	egories	Synthetic diffe 000●0	erential geometry	Conclusion
Kock's embec	ding is	not the	standard	one	

- Typical models of SDG are sheaves on a category of $C^\infty\text{-algebras}.$
- The standard embedding of smooth finite dimensional manifolds into a model of SDG is given by mapping a manifold M directly to its algebra $C^{\infty}(M)$, then by Yoneda into the sheaf category.
- This is where the operational tangent bundle comes from: as maps C[∞](M) → D = Spec(ℝ[ε]).
- But this doesn't work for smooth convenient manifolds! This embedding is not full and faithful.

Introduction 000	Differential cat	egories	Synthetic diffe 000●0	erential geometry	Conclusion
Kock's embec	ding is	not the	standard	one	

- Typical models of SDG are sheaves on a category of $C^\infty\text{-algebras}.$
- The standard embedding of smooth finite dimensional manifolds into a model of SDG is given by mapping a manifold M directly to its algebra $C^{\infty}(M)$, then by Yoneda into the sheaf category.
- This is where the operational tangent bundle comes from: as maps C[∞](M) → D = Spec(ℝ[ε]).
- But this doesn't work for smooth convenient manifolds! This embedding is not full and faithful.
- Instead, the embedding directly defines an action of a Weil algebra on each smooth convenient manifold.

Introduction	Differential categories	Synthetic differential geometry	Conclusion
000		0000●	00
Synthetic =	Kinematic		

• One can show that the action of the Weil algebra corresponds to exponentiation by the corresponding infinitesimal object.

Introduction	Differential categories	Synthetic differential geometry	Conclusion
000		0000●	00
Synthetic	= Kinematic		

- One can show that the action of the Weil algebra corresponds to exponentiation by the corresponding infinitesimal object.
- In particular, the action of the ring of dual numbers ℝ[ε] corresponds to exponentiation by D.

Introduction	Differential categories	Synthetic differential geometry	Conclusion
000		0000●	00
Synthetic $=$ I	Kinematic		

- One can show that the action of the Weil algebra corresponds to exponentiation by the corresponding infinitesimal object.
- In particular, the action of the ring of dual numbers R[ε] corresponds to exponentiation by D.
- And the action of the ring of dual numbers that Kock defines is the kinematic tangent bundle.

So, as with differential categories, the kinematic tangent bundle is the right tangent bundle.

Introduction 000	Differential categories	Synthetic differential geometry	Conclusion ●○
In the text?			

Introduction 000	Differential categories	Synthetic differential geometry	Conclusion ●0
In the text?			

• The definition of vector field they settle on is based on the kinematic tangent bundle.

Introduction	Differential categories	Synthetic differential geometry	Conclusion
000	000000	00000	●O
In the text?			

- The definition of vector field they settle on is based on the kinematic tangent bundle.
- The definition of differential form they settle on is based on the kinematic tangent bundle.

Introduction	Differential categories	Synthetic differential geometry	Conclusion
000		00000	●O
In the text?			

- The definition of vector field they settle on is based on the kinematic tangent bundle.
- The definition of differential form they settle on is based on the kinematic tangent bundle.
- The only place they "need" the operational tangent bundle is to define the Lie bracket of kinematic vector fields: but one can do this via SDG without the operational tangent bundle.

Introduction	Differential categories	Synthetic differential geometry	Conclusion
000		00000	●O
In the text?			

- The definition of vector field they settle on is based on the kinematic tangent bundle.
- The definition of differential form they settle on is based on the kinematic tangent bundle.
- The only place they "need" the operational tangent bundle is to define the Lie bracket of kinematic vector fields: but one can do this via SDG without the operational tangent bundle.

While this appears not to be explicitly recognized in the text itself, all their results also point to the kinematic tangent bundle being the right thing.

Introduction 000	Differential categories	Synthetic differential geometry	Conclusion ○●
Conclusion			

By working with the theory directly, the authors find it hard to distinguish the kinematic and operational tangent bundles: only viewed through the general theory of differential categories or synthetic differential geometry is it apparent that the correct tangent bundle is the kinematic one. Knowing this would have saved them a lot of effort!

Introduction 000	Differential categories	Synthetic differential geometry	Conclusion ○●
Conclusion			

By working with the theory directly, the authors find it hard to distinguish the kinematic and operational tangent bundles: only viewed through the general theory of differential categories or synthetic differential geometry is it apparent that the correct tangent bundle is the kinematic one. Knowing this would have saved them a lot of effort!

Some further points to consider:

- This discussion also applies to non-Hausdorff paracompact smooth finite dimensional manifolds: for these as well, the kinematic tangent bundle is the correct definition.
- Since the operational definition more closely relates to constructions in algebraic geometry, it is often the preferred definition; this gives an instance where the kinematic definition is preferred.