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It was the best of times...

Throughout the 1980’s and 1990’s, Kriegl and Michor worked on a
framework that would allow them to discuss smooth manifolds
modelled on infinite dimensional vector spaces.

Definition

A convenient vector space is a locally convex vector space E

such that any smooth curve R c // E has a smooth antiderivative.

This condition is equivalent to a number of other important
conditions.

One defines a map f : E // F to be smooth if it maps
smooth curves to smooth curves.

They build a large amount of theory on “convenient manifolds”:
spaces that locally look like a convenient vector space with all
transition maps smooth.
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The tangent bundle

There are two tangent bundle definitions:

Definition

If E is a convenient vector space, a kinematic tangent vector is
an equivalence class of smooth curves f : R // E with f ∼ g if
f (0) = g(0) and f ′(0) = g ′(0). Locally, the kinematic tangent
bundle of a convenient manifold M is its set of kinematic tangent
vectors.

Definition

Let x be a point in a smooth manifold M. An operational
tangent vector at x is a linear map α : C∞(M) // R which
satisfies

α(fg) = α(f ) · g(x) + α(g) · f (x).

The set of all operational tangent vectors over all points of M
forms the operational tangent bundle DM.
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It was the worst of times.

For a smooth convenient manifold, these definitions may give
different results!

This difference causes some headaches: for example, should a
vector field be a section of the kinematic or the operational
tangent bundle?

As another example, the authors are forced to consider 12 (!)
different definitions of differential form, some based on the
kinematic tangent bundle, some on the operational.

We will investigate which definition is “right” via differential
categories and synthetic differential geometry.
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Differential categories

We’ll start by looking at conveninent smooth manifolds via a
definition of Blute, Cockett and Seely (2007):

Definition

A cartesian differential category consists of a cartesian left additive
category which has, for each map f : X // Y , a map
D[f ] : X × X // Y satisfying seven axioms (chain rule, D
preserves addition, symmetry of partial derivatives, etc.)

Think of D as the Jacobian, evaluted at the second X , in the
direction of the first X .

As an example of the axioms, the chain rule is given by asking
that D[fg ] = 〈D[f ], π1f 〉D[g ].
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Examples of cartsian differential categories

Cartesian spaces: objects natural numbers, a map f : n //m
is a smooth map f : Rn // Rm.

Examples from differential linear logic.

Cockett and Seely (2011): cartesian differential categories are
comonadic over left additive cartesian categories, so every left
additive cartesian category has an associated cofree cartesian
differential category (a slightly generalized version may be
comonadic over cartesian categories!).

Most relevant for us: Blute, Erhard and Tasson (2011)
showed convenient vector spaces and smooth maps are a
cartesian differential category.
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Differential restriction categories

How do we get from differential categories to categories of smooth
manifolds? To build categories of smooth manifolds, we need to
know about open sets. One way to do this is via the restriction
categories of Cockett and Lack (2005):

Definition

A restriction category is a category which has for each map
f : X //Y a map f : X //X satisfying four axioms, representing
the “domain of definition” of f .

Using a different name for this structure, Grandis (1989)
showed that starting with any suitably well-behaved restriction
category, one can build a category of manifolds.

But what do we get when the restriction category has
compatible differential structure?
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Tangent structure

If we start with a differential restriction category (Cockett,
Cruttwell, Gallagher 2011) and build its category of manifolds, we
get the following structure (Cruttwell and Cockett 2011):

Definition

Tangent structure for a cartesian category X consists of an
endofunctor T : X // X with:

a natural map TX
pX // X which has the structure of a

commutative monoid in X \ X for each X ;

T preserves products and certain pullbacks;

two natural transformation l : T // T 2 (“vertical lift”) and
c : T 2 // T 2 (“canonical flip”) which preserve the
commutative monoid structure.

There is a sense in which the properties of this tangent bundle are
equivalent to the properties of a cartesian differential category.
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Tangent structure on convenient manifolds is the
kinematic tangent bundle

So, our general theory builds a tangent bundle functor on the
category of convenient manifolds: but which one?

The kinematic tangent bundle is exactly the one we get with
our general theory.

In essence, a kinematic tangent vector is simply a choice of
two points: c(0) and c ′(0), and this matches with differential
categories, with derivative D[f ] : X × X // Y .

Thus our general theory immediately gives us a host of results
about the kinematic tangent bundle.
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The operational tangent bundle is not even tangent
structure

The kinematic tangent bundle is directly built out of the
differential structure of conveniennt vector spaces. Is the
operational tangent bundle at least tangent structure?

Somewhat buried in Kriegl and Michor’s book: the
operational tangent bundle does not preserve products.

There appears to be no vertical lift.

Thus, for differential categories and tangent structure, the
kinematic tangent bundle is the right tangent bundle; the
operational tangent bundle is simply “something else”.



Introduction Differential categories Synthetic differential geometry Conclusion

The operational tangent bundle is not even tangent
structure

The kinematic tangent bundle is directly built out of the
differential structure of conveniennt vector spaces. Is the
operational tangent bundle at least tangent structure?

Somewhat buried in Kriegl and Michor’s book: the
operational tangent bundle does not preserve products.

There appears to be no vertical lift.

Thus, for differential categories and tangent structure, the
kinematic tangent bundle is the right tangent bundle; the
operational tangent bundle is simply “something else”.



Introduction Differential categories Synthetic differential geometry Conclusion

The operational tangent bundle is not even tangent
structure

The kinematic tangent bundle is directly built out of the
differential structure of conveniennt vector spaces. Is the
operational tangent bundle at least tangent structure?

Somewhat buried in Kriegl and Michor’s book: the
operational tangent bundle does not preserve products.

There appears to be no vertical lift.

Thus, for differential categories and tangent structure, the
kinematic tangent bundle is the right tangent bundle; the
operational tangent bundle is simply “something else”.



Introduction Differential categories Synthetic differential geometry Conclusion

The operational tangent bundle is not even tangent
structure

The kinematic tangent bundle is directly built out of the
differential structure of conveniennt vector spaces. Is the
operational tangent bundle at least tangent structure?

Somewhat buried in Kriegl and Michor’s book: the
operational tangent bundle does not preserve products.

There appears to be no vertical lift.

Thus, for differential categories and tangent structure, the
kinematic tangent bundle is the right tangent bundle; the
operational tangent bundle is simply “something else”.



Introduction Differential categories Synthetic differential geometry Conclusion

Synthetic differential geometry

In contrast to the low-level approach of differential categories is
synthetic differential geometry, which defines a “smooth topos” as
a topos with a special “infinitesimal object” D.

Definition

For any object X in a smooth topos, one can define its tangent
bundle as XD .

When restricted to the “infinitesimally linear” objects, this
endofunctor is tangent structure (as defined earlier).
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SDG and smooth convenient manifolds

In the early 1980’s, Anders Kock showed that the category of
convenient vector spaces fully and faithfully embeds inside a
model of SDG, the “Cahiers” or ”Dubuc” topos.

It is easy to show that this embedding extends to smooth
convenient manifolds as well.

So, we can ask the question: which tangent bundle, if either,
does the “synthetic” tangent bundle correspond to?
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Synthetic != Operational

Suppose one has a fully faithful embedding of smooth
convenient manifolds into a smooth topos which preserves
products. Then the synthetic tangent bundle cannot equal the
operational tangent bundle, as the synthetic tangent bundle
preserves products ((X × Y )D ∼= XD × Y D), while the
operational one does not!

Since Kock’s embedding preserves products, the synthetic
tangent bundle cannot be the operational tangent bundle.

But could the synthetic tangent bundle be the kinematic tangent
bundle?
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Kock’s embedding is not the standard one...

It is worth describing Kock’s embedding, as it is not the standard
embedding!

Typical models of SDG are sheaves on a category of
C∞-algebras.

The standard embedding of smooth finite dimensional
manifolds into a model of SDG is given by mapping a
manifold M directly to its algebra C∞(M), then by Yoneda
into the sheaf category.

This is where the operational tangent bundle comes from: as
maps C∞(M) // D = Spec(R[ε]).

But this doesn’t work for smooth convenient manifolds! This
embedding is not full and faithful.

Instead, the embedding directly defines an action of a Weil
algebra on each smooth convenient manifold.
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Synthetic = Kinematic

One can show that the action of the Weil algebra corresponds
to exponentiation by the corresponding infinitesimal object.

In particular, the action of the ring of dual numbers R[ε]
corresponds to exponentiation by D.

And the action of the ring of dual numbers that Kock defines
is the kinematic tangent bundle.

So, as with differential categories, the kinematic tangent bundle is
the right tangent bundle.
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In the text?

So, from both theoretical perspectives, the kinematic tangent
bundle is the right one. Does this show up in the theory they
construct?

The definition of vector field they settle on is based on the
kinematic tangent bundle.

The definition of differential form they settle on is based on
the kinematic tangent bundle.

The only place they “need” the operational tangent bundle is
to define the Lie bracket of kinematic vector fields: but one
can do this via SDG without the operational tangent bundle.

While this appears not to be explicitly recognized in the text itself,
all their results also point to the kinematic tangent bundle being
the right thing.
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Conclusion

By working with the theory directly, the authors find it hard to
distinguish the kinematic and operational tangent bundles: only
viewed through the general theory of differential categories or
synthetic differential geometry is it apparent that the correct
tangent bundle is the kinematic one. Knowing this would have
saved them a lot of effort!

Some further points to consider:

This discussion also applies to non-Hausdorff paracompact
smooth finite dimensional manifolds: for these as well, the
kinematic tangent bundle is the correct definition.

Since the operational definition more closely relates to
constructions in algebraic geometry, it is often the preferred
definition; this gives an instance where the kinematic
definition is preferred.
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