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Abstract

The manifolds built of a differential restriction category provide an abstract setting for
differential geometry. However, these categories of manifolds are, in general, not differential
restriction categories. The differential structure manifests itself, instead, through a tangent
bundle functor with associated structural maps. The purpose of this paper is to give a precise
axiomatization of this “tangent structure” and to begin to explore its consequences.

Tangent structure is of independent interest: it subsumes differential structure and is stable
under a wide variety of constructions. While many of the properties of tangent structure are
well-known to differential geometers, there do appear to be some basic structural aspects which
have not been widely noted.
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1 Introduction

This paper is a continuation of the categorical exploration of differential structure, as described
in [Blute et. al. 2006], [Blute et. al. 2008] and [Cockett et. al. 2011], into the realm of differential
geometry and smooth manifolds. The reader is expected to be familiar with the ideas of those
papers. In particular, this paper provides an axiomatization of differential structure at the level of
smooth manifolds: we call this “tangent structure”, and it is based on the properties of the tangent
bundle functor.

Beginning with [Blute et. al. 2006] and continuing with [Blute et. al. 2008], the authors sought
to algebraically axiomatize the fundamental properties of differentiation. In doing so, the authors
bridged the gap between the differential λ-calculus [Erhard and Regnier 2003] which deals with
computational resources, and the standard notion of calculus, which deals with smooth functions
as covered in any basic undergraduate course. Continuing in [Cockett et. al. 2011], the authors
expanded the axiomatization to deal with partial maps. Partial maps are fundamental in both
of the above areas: in computation, programs that need not terminate are fundamental, and in
calculus, one often works with smooth maps only defined on some open subset.

In that paper, the authors showed that differential structure is stable when one completes the
category by formally adding partial maps with special properties. What is not typically true,
however, is that differential restriction structure is stable when one adds more objects to the
category. The fundamental example of this is when one builds manifolds out of the original category:
even if the original category has differential structure, the resulting manifold category need not.

To see why this is, recall that the basic structure of a differential category is an operation which
takes a map f : X // Y , and produces a map

D[f ] : X ×X // Y.

In the standard example, this takes a smooth map f : Rn // Rm and gives the map

J [f ] : Rn × Rn // Rm

which, given a point (a, b), takes the Jacobian of f , evaluates it at b, then applies the resulting
matrix to the vector a.

If we look at the category of smooth real manifolds, this structure does not exist. There is a
differentiation operation, but it does not produce a map of the correct type: given a smooth map
f : M //N between smooth manifolds, differentiation produces a smooth map T (f) : TM //TN ,
where T is the tangent bundle functor. Thus, we should not expect the manifold completion of a
differential restriction category to again be a differential restriction category. Instead, we expect
that the resulting category have a tangent bundle functor T which enjoys certain properties.

To determine what these properties should be, we look at each of the differential axioms, and
determine what properties they should give. Some are straightforward: for example, the differential
axioms

〈a+ b, c〉D[f ] = 〈a, c〉D[f ] + 〈b, c〉D[f ] and 〈0, c〉D[f ] = 0
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show that T is an additive bundle. Others, however, are less obvious. For example, the axiom
which tells us that differentiation is linear (labelled D6 in [Blute et. al. 2008]) produces a “vertical
lift” natural transformation from T to T 2.

The properties that the axioms of differentiation imply for a tangent bundle functor provides our
axiomatization of “tangent structure” which, by itself, can stand alone. This is clearly of significant
interest as it captures fundemantal properties which underlie differential geometry. However, this
axiomatization of the tangent bundle functor appears, as far as we can tell, nowhere in the literature!

The closest we can find is the book [Kólǎr et. al. 1993]. It describes each of the natural trans-
formations which appear in our definition, however, it never packages this structure together, nor
is the explicit connection with the properties of differentiation made. Of course, when one does
package the structure together in this manner, other structural properties emerge. For example,
having tangent structure implies the tangent bundle functor is a monad: this basic fact we can
find nowhere in the differential geometry literature1. Both the Kleisli and the Eilenberg-Moore
categories of this monad appear to be of some interest.

An overview of the paper is as follows. In the first section, we give our abstract definition
of tangent structure, work out some simple properties, and discuss examples. In section 3, we
recall the notion of a differential restriction category, and show that every differential restriction
structure is equivalent to a “trivial” tangent structure. In section 4, we discuss Grandis’ manifold
construction, and show that the manifold completion of a category with tangent structure itself has
tangent structure. Finally, in section 5, we generalize some results and definitions of differential
geometry to our setting and include the discussion of T as a monad.

2 Tangent Structure

We begin by defining the central notion of the paper, tangent structure; in later sections we will
explicitly give the connection to differential (restriction) categories.

2.1 Additive bundles

The main goal of the paper is to abstractly formalize the category of smooth manifolds with its
tangent bundle functor. We begin by defining the notion of an additive bundle over an object.

Definition 2.1 If A is an object in a restriction category X then an additive bundle over A
consists of the following:

• A total map X
p //A such that the restriction pullback of n copies of X

p //A exists; denote
these by Xn, with structure maps pi : Xn

//X;

• Total maps + : X2
//X and 0 : M //X, with +p = p1p = p2p and 0p = 1 such that:

1The fact that there is such a monad for a cartesian differential category was independently discovered in
[Manzyuk 2012]; there, the author also proves the monad has a commutative strength and a distribution over it-
self.
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– addition is associative, commutative, and unital; that is, each of the following diagrams
commute:

X2 X
+

//

X3

X2

〈p1,〈p2,p3〉+〉 ��

X3 X2
〈〈p1,p2〉+,p3〉// X2

X

+��
X2 X

+
//

X2

X2

〈p2,p1〉 ��

X2

X

+

((RRRRRRRRRRR

X2 X
+

//

X

X2

〈p0,1〉 ��

X

X

1

((RRRRRRRRRRR

When restricted to the total maps of X, this is the same as asking for a commutative monoid in the
slice category Total(X)/A. There appears to be no notion of slice category for restriction categories
which corresponds to the requirement that the pullbacks be restriction pullbacks, while giving the
notion of morphism that we wish:

Definition 2.2 Suppose that p : X // A and q : Y // B are additive bundles. An additive
bundle morphism consists of a pair of maps f : X // Y , g : A // B so that the following
diagrams commute:

A Bg
//

X

A

p
��

X Y
f // Y

B

q
��

X Y
f

//

X2

X

+ ��

X2 Y2
〈p1f,p2f〉 // Y2

Y

+��
X Y

f
//

A

X

0 ��

A B
g // B

Y

0��

The first diagram says that the pair is a map in the arrow category; the second that the map
preserves addition, and the last that it preserves zeroes. Note that even though these maps may
be partial, we still ask that the diagrams commute on the nose (rather than with an inequality).

Proposition 2.3 If X is a restriction category, then with the obvious composition, restriction, and
identities, additive bundles in X and their morphisms form a restriction category. If X has joins,
so does this category.

Proof: For composites, we define (f1, g1) ◦ (f2, g2) := (f1f2, g1g2). For such a map, the first and
third diagrams for an additive bundle morphism obviously commute, while the second diagram
commutes since

〈p1f1f2, p2f1f2〉+

= 〈p1f1, p2f2〈p1f2, p2f2〉+ (by the universal property of 〈, 〉)
= 〈p1f1, p2f2〉+ f2 (since f2 is an additive bundle morphism)

= f1f2 + (since f1 is an additive bundle morphism)

as required.
For restrictions, we define (f, g) := (f , g ). This satisfies the first diagram:

pg = pg p = fq p = f p

since q is total. For the second diagram,

+f = +f +

= 〈p1f , p2f 〉 +

= p1f p2f + (since + is total)

= p1f p1, p2f p2 +

= 〈p1f , p2f 〉+
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as required. For the last diagram,

0f = 0f 0 = g 0 0 = g 0

since 0 is total.
If X has joins, we define

∨
i(fi, gi) := (

∨
i fi,

∨
i gi). The first and third diagrams commute since

joins preserve composition. The second diagram requires slightly more care. We first show that for
any map (f, g) from p : X //A to q : Y //B, p1f = p2f :

p1f = p1fp (since p is total)

= p1pg (by the first diagram for (f, g))

= p2pg

= p2fp (by the first diagram for ((f, g))

= p2f (since p is total)

Now, we need to show that the pair (
∨
i fi,

∨
j fj) satisfies the second diagram to be an additive

bundle morphism. Consider:

〈p1

∨
i

fi, p2

∨
j

fj〉+ =
∨
i,j

〈p1fi, p2fj〉+

=
∨
i,j

〈p1fi, p1fi p2fj〉+

=
∨
i,j

〈p1fi, p2fi p2fj〉+ (by the result above)

=
∨
i,j

〈p1fi, p2fj p2fi〉+ (since fi ^ fj)

=
∨
i,j

p2fj 〈p1fi, p2fi〉+

=
∨
i

〈p1fi, p2fi〉+

=
∨
i

+fi = +
∨
i

fi

as required. 2

2.2 Definition of tangent structure

With additive bundles defined, we can turn to our definition of tangent structure.

Definition 2.4 A tangent structure for a cartesian restriction category X consists of:

• (tangent functor) a restriction-preserving functor X T // X;

• (tangent bundle is additive) for each M ∈ X, TM has the structure of an additive bundle
over M ; so we have maps pM : TM //M , pullbacks Tn(M), and maps +M : T2M // TM ,
0M : M //TM ; we also ask that for each f : M //N , the pair (Tf, f) is an additive bundle
morphism;
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• (preservation of limits) for each n, k ∈ N, Tn preserves products and the pullbacks of any
k copies of pM : TM //M ;

• (vertical lift) there is a total natural transformation T
` // T 2 such that for each M , the

pair (`M , 0M ) is an additive bundle morphism from (p : TM //M) to (Tp : T 2M // TM);

• (canonical flip) there is a total natural transformation T 2 c //T 2 such that for each M , the
pair (cM , 1) is an additive bundle morphism from (Tp : T 2M //TM) to (pT : T 2M //TM).

For more about the vertical lift and its relationship to the vertical lift in differential geometry, see
the discussion before Proposition 5.3. The fact that Tp : T 2M //TM is an additive bundle follows
from the requirement that T preserves the pullbacks defining the Tn’s.

Proposition 2.5 If (X, T ) is tangent structure, then:

(i) Tf = pf .

(ii) If X has joins, then T preserves them.

(iii) Each Tn is a functor, with Tn(f) := 〈pif〉i≤n.

(iv) The maps pM , +M , and 0M are natural.

(v) The additive bundle objects (T (p), T (+), T (0)) and (pT ,+T , 0T ) are isomorphic.

(vi) cpT = T (p), and cT (p) = pT .

(vii) `T (p) = p0 = `pT .

(viii) For any point x : 1 //M , T (x) = x0M .

Proof:

(i) since p is total, T (f) = T (f)p = pf by naturality of p.
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(ii) Consider:

∨
i∈I

T (fi) =
∨
i∈I

T

fi ∨
j∈I

fj

 (since fi ≤
∨
j ∈ I)

=
∨
i∈I

T (fi)T

∨
j∈I

fj

 (since T is a restriction functor)

=
∨
i∈I

pfi T

∨
j∈I

fj

 (by (i))

=
∨
i∈I

pfi T

∨
j∈I

fj


= p

∨
i∈I

fi T

∨
j∈I

fj


= T

(∨
i∈I

fi

)
T

∨
j∈I

fj

 (by (i))

= T

(∨
i∈I

fi

)

as required.

(iii) See proposition 4.5.

(iv) One of the axioms asks that for each f : M //N , (Tf, f) be an additive bundle morphism.
That is, the following diagrams commute:

M N
f
//

TM

M

pM ��

TM TN
Tf // TN

N

pN��
TM TN

Tf
//

T2M

TM

+M ��

T2M T2N
〈p1Tf,p2Tf〉// T2N

TN

+N��
TM TN

Tf
//

M

TM

0M ��

M N
f // N

TN

0N��

in other words, p, +, and 0 are natural. (Note then that asking that these maps be natural
is actually equivalent to (Tf, f) being an additive bundle morphism).

(v) Since (c, 1)(c, 1) = (1, 1), (c, 1) is an additive bundle isomorphism between these objects.

(vi) Since (c, 1) is an additive bundle morphism from (Tp : T 2M //TM) to (pT : T 2M //TM),
the first diagram for additive bundle morphisms says cpT = T (p). But then since c2 = 1, we
also have cT (p) = pT .

(vii) `T (p) = p0 since (`, 0) is an additive bundle morphism from (p : TM // M) to (Tp :
T 2M // TM). But by the previous result, T (p) = cpT , so `cpT = p0, and hence `pT = p0
since `c = `.
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(viii) By naturality of 0, x0M = 01T (x) = T (x).

2

Note that even though T has a natural transformation ` : T //T 2, and a natural transformation
p : T //I, (T, p, `) is not a comonad: part (vii) of the previous result explicitly tells us that neither
counit axiom holds. Surprisingly, however, we shall see in section 5.2 that there is a multiplication
µ : T 2 // T which makes (T, 0, µ) into a monad.

Just as for differential categories, tangent categories allow for partial differentiation. Let s be
the canonical map from T (A×B) // TA× TB; since T is cartesian, this map has an inverse, and
we can define:

Definition 2.6 Suppose (X, T ) is tangent structure, and f is a map from a product: f : A×B //C.
We define the partial derivative of f for A by

TA(f) := TA×B 1×0 // TA× TB s−1
// T (A×B)

Tf // TC

and f for B by

TB(f) := A× TB 0×1 // TA× TB s−1
// T (A×B)

Tf // TC.

Just as for cartesian differential categories, we can recover Tf from its partial derivatives:

Proposition 2.7 If f is as above, then

Tf = 〈s(1× p)TAf, s(p× 1)TBf〉+

Proof: First, note the pairing map into the pullback is well-defined, as the two maps are equal
when post-composed by p:

s−1(1× p)TAfp
= s−1(1× p)(1× 0)sT (f)p

= s−1(1× p0)spf (by naturality of p)

= s−1(1× p0)(p× p)f
= s−1(p× p)f (since 0p = 1)

and similarly when the other maps is post-composed by p.
To show that Tf can be recovered as described, consider:

〈s−1(1× p)TAf, s−1(p× 1)TBf〉+

= 〈s−1(1× p0)Tf, s−1(p0× 1)Tf〉+ (as above)

= 〈s−1(1× p0), s−1(p0× 1)〉〈p1Tf, p2Tf〉+

= 〈s−1(1× p0), s−1(p0× 1)〉+ T (f) (naturality of +)

= T (f) (since addition is unital)

as required. 2

We shall see more consequences of the axioms later; for now we discuss examples of tangent
structure.
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2.3 Examples

The category of smooth finite-dimensional manifolds and smooth maps, equipped with the tan-
gent bundle, is the canonical example. This can be verified directly, but we will give a proof via
differential restriction categories in section 3.

The results of section 3 will also show that the category of convenient manifolds and smooth
maps, equipped with the “kinematic tangent bundle” [Kriegl and Michor 1997], is tangent struc-
ture. On the other hand, the “operational tangent bundle” does not give tangent structure, as it
does not preserve products (for more on these tangent bundles, see section 4.3).

An important source of examples comes from synthetic differential geometry:

Proposition 2.8 The infinitesesimally linear objects ([Kock 2006] pg. 20 definition 6.3) in a model
of synthetic differential geometry have tangent structure, with TM := MD.

Proof: That M is infinitesesimally linear says precisely that the pullback of p over itself is given
by MD(2), so we define T2M = MD(2), and similarly TnM = MD(n). Then the various bits of
structure are given by applying the functor M (−) to particular maps between these infinitesimal
objects:

• addition is described on pages 24-25 of [Kock 2006]: it is induced by the diagonalization map
∆ : D //D2, while the 0 map is induced by the unique map D // 1;

• the map D2 //D which induces vertical lift is given by mapping (x1, x2) to (x1 · x2);

• the canonical flip c : T 2M // T 2M is described in exercise 7.1 on page 27: it is induced by
the “twist” map t : D2 //D2.

The coherence axioms are then straightforward to check. For example, the fact that c is an additive
bundle morphism follows since the diagram

D ×D D ×D(2)
1×∆

//

D ×D

D ×D

t

��

D ×D D(2)×D∆×1 // D(2)×D

D ×D(2)

t

��

commutes. 2

Note we only need that the objects be infinitesimally linear, not microlinear, as we only need that
the Tn’s are the pullbacks of the T ’s (microlinearity asks about more general diagrams involving
infinitesimal objects).

One important non-example of tangent structure is the pair (X, Tn), when (X, T ) is tangent
structure. These have an obvious projection p1p : Tn // I. It is clear that the pullback of m copies
of Tn along this projection equals Tnm, and there is an addition map

T2n

〈〈pi,pi+n〉+〉i≤n // Tn
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which satisfies the required coherences. One can also define a canonical flip. For n ≥ 2, however,
there is no vertical lift: the obvious extension of the vertical lift for T gives a map from Tn2 to
(Tn)2. The structure of these functors, and other “Weil functors”, such as T 2, are clearly of great
interest but beyond the scope of this paper.

For now, we turn to the promised connection between differential restriction categories and
tangent structure.

3 Differential restriction categories and tangent structure

In addition to giving a formal axiomatization of the tangent bundle, one of the purposes of tangent
structure is to resolve the following problem. Differential categories were invented to describe
categories with a differentation operation. But there was an obvious problem with the formalization:
the category of smooth manifolds and smooth maps between them was not an example. More
generally, if we begin with a differential restriction category with joins ([Cockett et. al. 2011]), and
form its manifold completion ([Grandis 1989]), the result is not a differential restriction category.
What one does get, however, is tangent structure.

One can show this directly, but the proof is quite cumbersome, as manifolds are difficult to
work with directly. Instead, we break the result into two parts. First, we show that any differential
restriction category itself has tangent structure. In fact, having “trivial” tangent structure is
equivalent to differential restriction structure. These results are the main focus of this section.
In the following section, we show that the manifold completion of any restriction category with
tangent structure again has tangent structure. Combining these two results shows that the manifold
completion of a differential restriction category has tangent structure, as desired, and in particular,
gives a proof that the category of finite dimensional smooth manifolds, or the category of convenient
manifolds, has tangent structure.

3.1 Differential restriction categories

We begin by recalling the definition of a differential restriction category from [Cockett et. al. 2011].
Recall that the idea is to axiomatize the formal properties of the Jacobian. The D below is to be
thought of as the Jacobian of f , evaluated at the second X, then applied in the direction of the
first X.

Definition 3.1 A differential restriction category is a cartesian left additive restriction cate-
gory with an operation

X
f // Y

X ×X
D[f ]

// Y

(“differentiation”) such that

[DR.1] D[f + g] = D[f ] +D[g] and D[0] = 0;

[DR.2] 〈a+ b, c〉D[f ] = 〈a, b〉D[f ] + 〈b, c〉D[f ] and 〈0, a〉D[f ] = af0;

[DR.3] D[π0] = π0π0, and D[π1] = π0π1;

[DR.4] D[〈f, g〉] = 〈D[f ], D[g]〉;
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[DR.5] D[fg] = 〈D[f ], π1f〉D[g];

[DR.6] 〈〈a, 0〉, 〈c, d〉〉D[D[f ]] = c〈a, d〉D[f ];

[DR.7] 〈〈0, b〉, 〈c, d〉〉D[D[f ]] = 〈〈0, c〉, 〈b, d〉〉D[D[f ]];

[DR.8] D[f ] = (1× f)π0 = π1f π0;

[DR.9] D[f ] = 1× f = π1f .

In fact, however, there is an alternative version of these axioms, which is more directly relevant
for tangent structure.

Proposition 3.2 The axioms for a differential restriction category are equivalently given by re-
placing [DR.6] and [DR.7] with the following axioms:

• [DR.6′] 〈〈a, 0〉, 〈0, d〉〉D[D[f ]] = 〈a, d〉D[f ];

• [DR.7′] 〈〈a, b〉, 〈c, d〉〉D[D[f ]] = 〈〈a, b〉, 〈c, d〉〉D[D[f ]].

Proof: Assume that D satisfies the usual set of axioms. Clearly, it then satisfies [DR.6′], by
setting c = 0. For [DR.7′], consider:

〈〈a, b〉, 〈c, d〉〉D2f

= 〈〈a, 0〉+ 〈0, b〉, 〈c, d〉〉D2f

= 〈〈a, 0〉, 〈c, d〉〉D2f + 〈〈0, b〉, 〈c, d〉〉D2f by [DR.2],

= c 〈a, d〉D2f + b 〈〈0, c〉, 〈b, d〉〉D2f by [DR.6] and [DR.7],

= b 〈a, d〉D2f + c 〈〈0, c〉, 〈b, d〉〉D2f by [DR.6] and [DR.7],

= 〈〈a, 0〉, 〈b, d〉D2f + 〈〈0, c〉, 〈b, d〉〉D2f by [DR.6] again,

= 〈〈a, c〉, 〈b, d〉〉D2f by [DR.2].

as required.
Now assume that D satisfies the alternate set of axioms, with [DR.6] and [DR.7] replaced

with [DR.6′] and [DR.7′]. Clearly, it then satisfies [DR.7], by setting a = 0. To show that it
satisfies [DR.6], we begin with a short calculation:

〈a, d〉Df = 〈a, d〉Df

= 〈a, d〉π1f

= 〈a, d〉π1f

= a df = a df
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Then to show [DR.6], consider:

〈〈a, 0〉, 〈b, d〉〉D2f

= 〈〈a, b〉, 〈0, d〉〉D2f (by [DR.7′])

= 〈〈a, 0〉, 〈0, d〉〉D2f + 〈〈0, b〉, 〈0, d〉〉D2f (by [DR.2])

= 〈a, d〉Df + 〈〈0, 0〉, 〈b, d〉〉D2f (by [DR.6′] and [DR.7′])

= 〈a, d〉Df + 〈b, d〉Df 0 (by [DR.2])

= 〈b, d〉Df 〈a, d〉Df
= 〈b, d〉Df 〈a, d〉Df 〈a, d〉Df
= b df a df 〈a, d〉Df (by the calculation above)

= b 〈a, d〉Df 〈a, d〉Df
= b 〈a, d〉Df

as required.
2

We recall a number of examples.

Example 3.3 Any cartesian differential category is a differential restriction category, when equipped
with the trivial restriction structure (f = 1 for all f).

The standard example is of course:

Example 3.4 Smooth functions defined on open subsets of Rn.

From [Cockett et. al. 2011], we also have the following more complicated example:

Proposition 3.5 If D is a commutative ring, then the restriction category of rational functions
over D, RatD, is a differential restriction category.

From [Blute et. al. 2011], we also have:

Example 3.6 The category of convenient vector spaces and smooth maps between them is a carte-
sian differential category; smooth maps defined on open subsets gives a differential restriction cat-
egory.

In [Cockett and Seely 2011], the authors prove a surprising result: there is a comonad Faà on
cartesian left additive categories whose coalgebras are cartesian differential categories. In particular,
we have:

Example 3.7 If X is a cartesian left additive category, Faà(X) is a cartesian differential category.

One can check that for any cartesian left additive category, defining the differential of f to be
π0f satisfies all axioms with the exception of [DR.2]. For this, we would need (a+ b)f = af + bf
and 0f = 0 for all a, b. Of course, this is true by definition if f is additive. Thus, if all maps in X
are additive (as in the case of the category of commutative monoids or commutative rings), then
D[f ] = π0f does define a differential.
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Example 3.8 If X is an additive cartesian category, then D[f ] = π0f gives X the structure of a
cartesian differential category.

As a helpful tool for certain calculations, we note the following result about differential restric-
tion categories from [Cockett et. al. 2011]:

Proposition 3.9 In a differential restriction category:

(i) D[fg] = (1× f)D[g] = π1f D[g];

(ii) If f ≤ g then D[f ] ≤ D[g];

(iii) If f ^ g then D[f ] ^ D[g].

3.2 Differential structure as tangent structure

We now give our first main result of this section.

Proposition 3.10 Any differential restriction category has a “trivial” tangent structure given by:

• TM := M ×M , Tf := 〈Df, π1f〉;

• p := π1

• Tn(M) := M ×M . . .×M (n+ 1 times);

• +〈a, b, c〉 := 〈a+ b, c〉, 0(a) := 〈0, a〉;

• l(〈a, b〉) := 〈〈a, 0〉, 〈0, b〉〉;

• c(〈〈a, b〉, 〈c, d〉〉) := 〈〈a, c〉, 〈b, d〉〉.

Proof: That T is a functor follows from [DR.5] and [DR.8]:

T (f)T (g) = 〈Df, π1f〉〈Dg, π1g〉 = 〈D(fg), π1fg〉 = T (fg) and T (1) = 〈D(1), π1〉 = 〈π0, π1〉 = 1.

T preserves restrictions since

T (f ) = 〈D(f , π1f 〉 = 〈π1f π0, π1f π1〉 = π1f

while
T (f) = 〈D(f), π1f〉 = D(f)π1f = π1f

as required.
For the additive bundle structure, it is clear that Tn(M) := M ×M . . . ×M (n + 1 times) is

the pullback of n copies of p : TM //M . It is also clear that +p = p1p = p2p and 0p = 1, and the
additive is associative, commutative and unital since addition of maps in a left additive category
is associative, commutative and unital.

As noted in the notes after the definition of tangent structure, asking that each T (f) = 〈Df, π1f〉
is an additive bundle morphism is equivalent to asking that each of p, +, and 0 be natural.
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That π1 is natural is immediate:

T (f)π1 = 〈Df, π1f〉π1 = π1f π1f = π1f.

+ is natural by [DR.2]:

〈a, 〈b, c〉〉(T2f)(+Y )

= 〈〈a, c〉Df, 〈〈b, c〉Df, π1π1c〉〉(+x)

= 〈〈a, c〉Df + 〈b, c〉Df, π1π1c〉
= 〈〈a+ b, c〉Df, π1π1c〉 by [DR.2],

= 〈a+ b, π1π1c〉(Tf)

= 〈a, 〈b, c〉〉(+X)(Tf)

as required. The naturality of 0 : X
〈0,1〉 //X ×X similarly follows by the other part of [DR.2].

Obviously, T preserves products and the pullbacks defining the Tn’s. That it preserves pairings
follows from [DR.3]:

T (〈f, g〉) = 〈D(〈f, g〉), π1〈f, g〉〉
= 〈〈Df,Dg〉), 〈π1f, π1g〉〉 by [DR.3],

= s〈〈Df, π1f〉, 〈Dg, π1g〉
= s〈Tf, Tg〉

(where s is the map that switches the the two interior terms). Similarly, preservation of the
projections follows from [DR.4].

The rest of the proof will involve calculations on maps whose domains are either T 2 or T2. To
make these calculations easier to follow, we will show that they are true when composing with an
arbitrary map into T 2 or T2, so that rather than dealing with projections of projections, we are
dealing with maps in the product spaces. In addition, we will often implicitly use [DR.8] when we
project out of a pairing.

The vertical lift is natural by [DR.6] and [DR.2]:

〈a, c〉(`x)(T 2f)

= 〈〈a, 0〉, 〈0, c〉〉(T 2f)

= 〈〈a, 0〉, 〈0, c〉〉〈〈D2f, 〈π0π1, π1π1〉Df〉, π1〈Df, π1f〉〉
= 〈〈〈a, c〉Df, 0〉, 〈0, cf〉〉 by [DR.6] in the first variable, and [DR.2] in the second and third,

= 〈〈a, c〉Df, cf〉`Y
= 〈a, c〉〈Df, π1f〉`Y
= 〈a, c〉T (f)(`Y )

as required.
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The canonical flip is natural by [DR.7′]:

〈〈a, b〉〈c, d〉〉(T 2f)(cY )

= 〈〈a, b〉〈c, d〉〉〈〈D2f, 〈π0π1, π1π1〉Df〉, π1〈Df, π1f〉〉(cY )

= 〈〈〈〈a, c〉〈b, d〉〉D2f, 〈b, d〉Df〉〉, 〈〈c, d〉Df, df〉〉(cY ) by [DR.7′]

= 〈〈〈〈a, c〉〈b, d〉〉D2f, 〈c, d〉Df〉, 〈〈b, d〉Df〉, df〉〉
= 〈〈a, c〉, 〈b, d〉〉T 2f

= 〈〈a, b〉〈c, d〉〉(cX)(T 2f)

as required.

To show that these maps are additive bundle morphisms, we need to determine T (+) and T (0).
By [DR.1] and [DR.3], T (+X) = T (〈π0 + π1π0, π1π1〉) is given by

〈〈π0π0 + π0π1π0, π0π1π1〉, 〈π1π0 + π1π0π1, π1π1π1〉〉

while
T (0) = T (〈0, 1〉) = 〈〈D0, D1〉, π1〉 = 〈〈0, 1〉, π1〉

Now, the map 〈p1c, p2c〉 sends

〈〈a, 〈b, c〉〉, 〈d, 〈e, f〉〉〉 7→ 〈〈a, d〉, 〈〈b, e〉, 〈c, f〉〉〉

We can then show that c preserves addition:

〈〈a, 〈b, c〉〉, 〈d, 〈e, f〉〉〉〈p1c, p2c〉(+TX)

= 〈〈a, d〉, 〈〈b, e〉, 〈c, f〉〉〉(+TX)

= 〈〈a+ b, d+ e〉, 〈c, f〉〉
= 〈〈a+ b, c〉, 〈d+ e, f〉〉(cX)

= 〈〈a, 〈b, c〉〉, 〈d, 〈e, f〉〉〉T (+X)(cX)

as required. Preservation of 0 similarly uses the equation T (0) = 〈〈0, 1〉, π1〉, and the calculations
to show l preserves addition are similar. 2

3.3 Diagonal tangent structure as differential structure

In fact, as the following shows, tangent structure of this form is equivalent to differential restriction
structure.

Definition 3.11 A diagonal (trivial) tangent structure on a cartesian left additive restriction
category is tangent structure for which TM = M ×M , and all natural transformations are given
as in Proposition 3.10.

Theorem 3.12 Any left additive cartesian restriction category X with diagonal tangent structure
has a differential, given by setting Df := T (f)π0 (and so is a differential restriction category).
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Proof: By naturality of p, we can determine that:

T (f) = 〈T (f)π0, T (f)π1〉 = 〈Df, π1f〉

Similarly,
T2(f) = 〈〈π0, π1π0〉D(f), 〈π1D(f), π1π1f〉

and

D2(f) = T (D(f))π0 = T (T (f)π0)π0 = T 2(f)T (π0)π0 = T 2(f)〈π0π0, π1π0〉π0 = T 2(f)π0π0.

We begin with [DR.5]:

D(fg) = T (fg)π0

= T (f)T (g)π0

= 〈T (f)π0, T (f)π1〉D(g)

= 〈Df, pi1f〉D(g) by naturality of p = pi1.

For [DR.8]:
D(f ) = T (f )π0 = pi1f π0

and [DR.9]:
D(f) = T (f)π0 = T (f) = π1f

Since the functor T is cartesian, with isomorphism s : T (M ×N) // TM × TN given by

s(m1, n1,m2, n2) = (m1,m2, n1, n2),

we have T (〈f, g〉) = 〈Tf, Tg〉s, T (π0) = sπ0 = 〈π0π0, π1π0, and T (π1) = 〈π1π0, π1π1〉. Then we get
[DR.4]:

D(〈f, g〉) = T (〈f, g〉)π0

= 〈Tf, Tg〉sπ0

= 〈Tf, Tg〉〈π0π0, π1π0〉
= 〈T (f)π0, T (g)π0〉
= 〈Df,Dg〉

and for [DR.3]:
D(π0) = T (π0)π0 = 〈π0π0, π1π0〉π0 = π0π0,

D(π0) = T (π1)π0 = 〈π0π1, π1π1〉π0 = π0π1,

D(1) = T (1)π0 = π0

For [DR.2], we have

〈a, 〈b, c〉〉T2f+ = 〈a, 〈b, c〉〉(+)T (f)

〈〈a, c〉Df, 〈〈b, c〉Df, cf〉〉+ = 〈a+ b, c〉T (f)

〈〈a, c〉Df + 〈b, c〉Df, cf〉 = 〈a+ b, c〉T (f)

〈a, c〉Df + 〈b, c〉Df = 〈a+ b, c〉D(f) appling π0 to both sides.
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and the 0 axiom is similar. For [DR.6], let a, b, c be maps Q
M // , and f : M // N . Then by

extension, we know that

〈a, 〈b, c〉〉lT 2f = 〈a, 〈b, c〉〉T2(f)l

〈〈a, 0〉, 〈b, c〉〉T 2f = 〈〈a, c〉Tfπ0, 〈〈b, c〉Tfπ0, cf〉〉l
〈〈a, 0〉, 〈b, c〉〉T 2fπ0π0 = 〈〈a, c〉Tfπ0, 〈〈b, c〉Tfπ0, cf〉〉lπ0π0

〈〈a, 0〉, 〈b, c〉〉D2f = 〈〈a, c〉Tfπ0, 〈〈b, c〉Tfπ0, cf〉〉π0

〈〈a, 0〉, 〈b, c〉〉D2f = b 〈a, c〉D(f)

as required.
For [DR.7], by naturality of c, we have

〈〈a, b〉〈c, d〉〉cT 2f = 〈〈a, b〉〈c, d〉〉T 2fc

〈〈a, c〉〈b, d〉〉T 2f = 〈〈a, b〉〈c, d〉〉T 2fc

〈〈a, c〉〈b, d〉〉D2f = 〈〈a, b〉〈c, d〉〉T 2fπ0π0 (applying π0 to both sides)

〈〈a, c〉〈b, d〉〉D2f = 〈〈a, b〉〈c, d〉〉D2f

as required.
For [DR.1], for D(0) = 0, from the preservation of 0, we know that

T (0) = 0c

T (〈0, 1〉) = 〈〈0, 0〉, 〈1, 1〉〉c
〈T0, T1〉s = 〈〈0, 0〉, 〈1, 1〉〉c
〈T0, T1〉 = 〈〈0, 0〉, 〈1, 1〉〉 since c = s and they are invertible,

T (0)π0 = 0 (applying π0π0 to both sides),

D(0) = 0.

and Df +Dg = D(f + g) similarly follows from the preservation of addition. 2

4 Manifolds

In the previous section, we showed that any differential restriction category has tangent structure.
Our goal now is to show that the manifold completion of a category with tangent structure has
tangent structure.

4.1 Definition of the manifold completion

We begin by briefly recalling the notion of the manifold completion of a join restriction category,
first described in [Grandis 1989].

Definition 4.1 Let X be a join restriction category. An atlas in X consists of a family of objects
(Xi)i∈I of X, together with, for each i, j ∈ I, a map φij : Xi

//Xj such that for each i, j, k ∈ I,

[Atl. 1] φiiφij = φi,j (partial charts);
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[Atl. 2] φijφjk ≤ φik (cocycle condition);

[Atl. 3] φij is the partial inverse of φji (partial inverse).

Definition 4.2 Suppose (Xi, φij) and (Yk, ψkh) are atlases in X. An atlas map A : (Xi, φij) //(Yk, ψkh)
is a family of maps

Xi
Aik // Yk

such that

[AtlM. 1] φiiAik = Aik;

[AtlM. 2] φijAjk ≤ Aik,

[AtlM. 3] Ai,kψkh = Aik Ai,h.

Morphisms of atlases are composed by matrix composition. Given atlas maps

U
A // V

B //W

we define (AB)im =
∨
hAihBhm. The identity map for an atlas is the atlas itself. There is a

restriction given by

A ij =

(∨
h

Aih

)
φij .

Theorem 4.3 (Grandis) If X is a join restriction category, then Mf(X), with objects atlases,
morphisms atlas maps, and composition, identities, and restriction as described above, is a join
restriction category.

The following is easily checked:

Proposition 4.4 Mf is an endofunctor on join restriction categories and join preserving restric-
tion functors, where

Mf(F )(Ui, φij) := (F (Ui), F (φij)),

and
Mf(F )(Aik) = (F (Aik)).

Moreover, if F
α //G is natural, then we get a natural transformation from Mf(F ) to Mf(G) by

(F (Ui), F (φij))
F (φij)αj=αiG(φij) // (G(Ui), G(φij))

so that Mf is a 2-functor. If α is total, then Mf(α) is as well.

Thus, since we have a 2-functor, applying Mf to T : X //X almost immediately gives tangent
structure. The only thing to check is the preservation of the pullbacks, which we do in the next
section.
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4.2 Functorial Restriction Pullbacks

The pullbacks of n copies of p : TM //M are a crucial part of tangent structure. Here, we briefly
record some useful results regarding these restriction pullbacks.

Proposition 4.5 Suppose that we have functors F,G,H : X // Y between restriction categories,
natural transformations α : F //H,β : G //H, and for each X ∈ X, there is an object PX ∈ Y
and maps lX : PX // FX, rX : PX //GX so that

FX HXαX

//

PX

FX

lX ��

PX GX
rX // GX

HX

βX��

is a restriction pullback. Then:

• P is a functor, with P (f) := [lXF (f), rXG(f)];

• if F and G preserve restrictions or joins, then so does P ;

• if both α and β are total, then l and r are natural.

Proof:

• First, we need to check P (f) is well-defined; that is, we need lXF (f)αY ^ rXG(f)βY . In
fact, they are equal:

lXF (f)αY = lXαXf = rxβXf = rXG(f)βY .

Then P is clearly functorial, as

P (f)P (g) = [lXF (f), rXG(f)][lY F (g), rYG(g)]

= [lXF (f)F (g), rXG(f)G(f)]

= [lXF (fg), rXG(fg)]

= P (fg)

and
P (1) = [lXF (1), rXF (1)] = [lX , rX ] = 1.

• If F and G preserve restrictions, then

P (f ) = [lXF (f ), rXG(f )]

= [lXF (f) , rXG(f) ]

= lXF (f) rXG(f) [lX , rX ]

= lXF (f) rXG(f)

= [lXF (f), rXG(f)]

= P (f)

so P does as well. If F and G preserves joins, then so does P , as pullback maps preserve
joins.
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• If lX and rX are total, we first show that rXF (f) = lXG(f) :

rXG(f) = rXG(f)βY since β is total,

= rXβXH(f) by naturality of β,

= lXαXH(f)

= rXF (f)αY by naturality of α,

= rXF (f) since α is total.

Then l is natural since

P (f)lY = [lXF (f), rXG(f)]lY = rXG(f) lXF (f) = lXF (f),

and similarly for r.

2

Proposition 4.6 Suppose we have all the conditions of the previous proposition, and X has joins.
Then for any object M = (Ui, φij) in Mf(X), the pullback also exists.

Proof: The diagram commutes since Mf is a functor. Thus, it suffices to show the universal
property. Suppose we have

(PUi, Pφij) (GUi, Gφij)
Mf(r)

//(PUi, Pφij)

(FUi, Fφij)

Mf(l)

��
(FUi, Fφij) HUi, Hφij

Mf(α) //

(GUi, Gφij)

HUi, Hφij

Mf(α)

��

(Vm, ψmn)

(GUi, Gφij)

B

--ZZZZZZZZZZZZZZZZZZZZZZZZZZZZ(Vm, ψmn)

(FUi, Fφij)

A

��???????????????????

so that AMf(α) ^ BMf(β). Now, compatability implies pointwise compatibility, so we have

AMf(α)mk ^ BMf(β)mk

for each m and k. By the lemma about Mf(α), this gives

Amkαk ^ Bmkαk.

Then by the universal property of the pullback in Y, we know there exists a map Vm
[Amk,Bmk] //PUk.

We claim these maps together form a manifold map. For ATM2,

ψmn[Ank, Bnk] = [ψmnAnk, ψmnBnk] ≤ [Amk, Bmk],

and ATM1 is similar. For ATM3,

[Amk, Bmk]Pφkj = [Amk, Bmk][lkF (φkj , rkG(φkh)] by definition of P ,

= [AmkF (φkj), BmkG(φkj)]

= [Amk Amj , Bmk Bmj ] by ATM3 for A and B,

= Amk Bmk [Amj , Bmj ]

= [Amk, Bmk] [Amj , Bmj ]
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so it is a manifold map.
For its restriction, recall that compatibility of AMf(α) and BMf(β) also implies that we have∨

i

(AMf(α))mi (BMf(β))mj =
∨
i

(BMf(β))mi (AMf(α))mj

that is, ∨
i

AmiαiBmjαj =
∨
i

BmiβiAmjβj ,

but since α and β are total, this reduces to∨
i

AmiBmj =
∨
i

BmiAmj .

Now, we want to show that [A,B]mn = (AB )mn. Indeed, consider

(AB )mn =
∨
i

Ami
∨
j

Bmj ψmn by definition of manifold map restriction,

=
∨
i

Ami
∨
j

Bmj Ami ψmn

=
∨
i

Ami
∨
j

Amj Bmi ψmn by the above calculation,

=
∨
i

AmiBmi ψmn

=
∨
i

[Ami, Bmi]ψmn

= [A,B]mn

as required.

Finally, suppose that we have some manifold map (Vm, ψmn)
C // (PUi, Pφij) such that

CMf(l) ≤ A and CMf(r) ≤ B.

This gives, for each m and i,
Cmili ≤ Ami and Cmiri ≤ Bmi,

so that by the universal property of the pullback in Y, we have

Cmi ≤ [Ami, Bmi]

so that C ≤ [A,B], as required.
2

Thus, we have:

Corollary 4.7 The manifold completion of join restriction category with tangent structure has
tangent structure.
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In particular:

Corollary 4.8 If X is a join differential restriction structure, then Mf(X) has tangent structure.

We note that if X does not have joins but has differential structure then one can always join
complete X without destroying the differential structure ([Cockett et. al. 2011], section 5).

4.3 Comparison with other tangent bundle functor definitions

Before moving on to further tangent structure theory, we briefly compare the tangent bundle we get
through the above process with the usual definitions of the tangent bundle of a smooth manifold.

Let M be a smooth manifold. Perhaps the most “geometric” standard definition of the tangent
bundle is the following:

Definition 4.9 (Kinematic tangent bundle) If V is a vector space, a kinematic tangent vector
is an equivalence class of smooth curves f : R // V with f ∼ g if f(0) = g(0) and f ′(0) = g′(0).
The set of all kinematic tangent vectors forms the kinematic tangent bundle KM . Given a
smooth map f : X // Y , one defines Kf : KX //KY by Kf(c) := cf .

The idea is that a tangent vector at a is an infitesimally small curve through a2.
However, this geometric definition is equivalent to the “local product” definition of the tangent

structure of a differential restriction category.

Proposition 4.10 In the category of smooth maps between cartesian spaces, K = T .

Proof: Given a kinematic tangent vector f : R // X, we define a pair of elements of X by
(D(f)(1, 0), f(0)). Given a pair of elements (x, a) of M , we define a kinematic tangent vector f by
f(r) := f(0) + r · x. It is clear that these two definitions are well-defined inverses of one another.

For the action on maps, the local product definition gives us that the result of applying T (f)
to c is

〈c′(0), c(0)〉〈Df, π1f〉

while the kinematic definition gives us

〈(cf)′(0), f(c(0))〉

(where g′(x) = Df(1, x)). These two definitions then agree by the chain rule. 2

Since these definitions agree on the base category, they also agree on the categories of manifolds,
and hence we have:

Corollary 4.11 In the category of smooth manifolds, K = T .

The second standard definition of the tangent bundle is the “operational” tangent bundle. For
a smooth manifold M , let C∞(M) denote the vector field of smooth maps from M to R.

2Synthetic differential geometry formalizes this by including infinitesimal spaces D, and defining a tangent vector
to be a map f : D //X.
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Definition 4.12 Let x be a point in a smooth manifold M . An operational tangent vector at
x is a linear map α : C∞(M) // R which satisfies

α(fg) = α(f) · g(x) + α(g) · f(x).

(These are known as linear derivations). The set of all operational tangent vectors over all points
of M forms the operational tangent bundle DM . Given a smooth map f : M //N , one defines
D(f)(α) as C∞(f)α.

This “functional analysis” version of the tangent bundle is popular because it is typically easier
to manipulate. Unfortunately, for the generality we are working, it is the wrong definition.

First, this definition does not work without a base object R, and so is impossible to define in
a general differential restriction category. However, even when this object exists, as, for example,
in the category of smooth maps between convenient vector spaces, this definition is not equivalent
to the kinematic definition. There is an obvious map from KM to DM : given a curve c, one can
define

αc(f) := cf ′(0)

which is easily checked to be a linear derivation. However, in general this map is only invertible
under special circumstances: for more information, see 28.7 of [Kriegl and Michor 1997].

5 T as a monad

In this final section, we show that T has the structure of a monad. The Kleisli category of this
monad is related to vector fields, however, so before showing the monad structure of T , we give a
short discussion of vector fields for tangent structure.

5.1 Vector fields

The notion of a vector field is of central importance in differential geometry, and generalizes easily
to our setting.

Definition 5.1 If (X, T ) is tangent structure, and M an object of T , a section of p : TM //M
of p is a vector field. That is, a vector field is a map v : M // TM such that vp = 1M .

The additive structure of vector fields also works in our setting.

Proposition 5.2 If (X, T ) is tangent structure, and M an object of T , then the set of vector fields
χ(M) has the structure of a commutative monoid. Moreover, if we have a map f : M //N , then
T (f) preserves these operations; that is, (v + w)T (f) = vT (f) + wT (f) and 0T (f) = 0.

Proof: Given two vector fields v, w : M // TM , we have vp = wp = 1, so we get a map
〈v, w〉 : T2M // TM . We then define v + w := 〈v, w〉+, and the 0 vector field as the 0 map
M // TM . By the axioms for a tangent structure, this is a commutative monoid.
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For the second claim, we have:

〈v, w〉+M T (f)

= 〈v, w〉T2(f) +N (by naturality of +)

= 〈v, w〉〈p1T (f), p2T (f)〉+N (by definition of T2)

= 〈vT (f), wT (f)〉+N

= vT (f) + wT (f)

as required; the 0 result follows similarly. 2

As we shall see in the next section, the addition of vector fields is in fact a specific case of
composition in a Kleisli category.

Before we get to that, however, we shall also describe a particular non-zero vector field that
is defined on each object of the form TM (note that each object has a canonical zero vector field
0 : M // TM , since 0p = 1). To describe this other canonical vector field, we need to revisit
our notion of vertical lift. Recall that the vertical lift of our axioms is a natural transformation
` : T // T 2. In the differential geometry literature, however, the standard vertical lift is a natural
transformation v : T2

// T 2. Here, we show that the standard vertical lift can be recovered from
the weak version of our axioms. One then uses the standard vertical lift to define the canonical
vector field on TM .

Proposition 5.3 If (X, T ) is tangent structure, then there is a natural transformation

v : T2
// T 2

with vpT = p2, and vT (p) = p1p0.

Proof: The map is given by
v := 〈p1`, p20T c〉+T c

First the first claim, consider

vpT = 〈p1`, p20T c〉+T cpT

= 〈p1`, p20T c〉+T T (p) (by proposition 2.5)

= 〈p1`, p20T c〉T2(p) + (naturality of +)

= 〈p1`, p20T c〉〈p1T (p), p2T (p)〉+

= 〈p1`T (p), p20T cT (p)〉+

= 〈p1p0, p20T pT 〉+ (by proposition 2.5

= 〈p2p0, p2〉+ (since 0p = 1 and p1p0 = p2p0)

= p2〈p0, 1〉+

= p2 (unit of the addition)

as required.
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For the second claim, consider

vT (p) = 〈p1`, p20T c〉+T cT (p)

= 〈p1`, p20T c〉+T pT (by proposition 2.5)

= 〈p1`, p20T c〉(p1p)T (since +p = p1p)

= p1`pT

= p1p0 (by proposition 2.5)

as required. 2

We can then define the so-called “Liouville vector field” on an object of the form TM .

Proposition 5.4 If M is an object of a tangent category (X, T ), then there is a vector field on
TM given by

TM
〈1,1〉v // T 2M

Proof: This is a vector field since 〈1, 1〉vpT = 〈1, 1〉p2 = 1, as required. 2

5.2 Monad structure of T

As we saw in the previous section, a category with tangent structure allows for an additive structure
on vector fields. But this is part of a much larger structure. As we shall see in this section, if (X, T )
is tangent structure, then T is in fact a monad, and the Kleisli category XT contains vector fields
and their addition - but is much more general.

We begin with an important map which “forgets” a double tangent vector in T 2:

Lemma 5.5 The map

T 2(M)
uM :=[Tp,pT ] // T2M

is a natural transformation from T 2 to T2.

Proof: Let M
f //N be an arbitrary map, and consider

(uM )(T2f) = [Tp, pT ][p1T (f), p2T (f)] by definition of T2(f),

= [T (p)T (f), pTT (f)]

= [T (pf), pTT (f)]

while

(T 2f)(uN ) = T 2(f)[Tp, pT ]

= [T 2(f)T (p), T 2(f)pT ]

= [T (T (f)p), pTT (f)] by naturality of p,

= [T (pf), pTT (f)] by naturality of p,

so that the two are equal, as required. 2
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In the context of synthetic differential geometry, a right inverse for u can be considered as notion
of affine connection [Kock and Reyes 1979], though we do not pursue that idea here.

We can now give the monad structure of T .

Proposition 5.6 If X is a cartesian restriction category with tangent structure T , then T is a

monad, with unit M
0 // TM , and multiplication µ given by the composite

T 2M
u // T2M

+ // TM.

Proof: By definition, the 0 and + are natural, and we have shown u is natural above. Thus, we
only need to check the unit and associativity axioms. For one unit axiom, consider

T (0)u+

= T (0)[T (p), p] +

= [T (0)T (p), T (0)p] +

= [T (0p), p0] + by functoriality of T and naturality of p,

= [T (1), p0] + by coherence for p,

= [1, p0] +

= 1 by the unit axiom for the addition of tangent vectors.

For the other unit axiom, consider

0[T (p), p] +

= [0T (p), 0p] +

= [0cp, 1] + by coherence of c and p,

= [T (0)p, 1] + by preservation of 0,

= [p0, 1] + by naturality of p,

= 1 by the unit axiom for the addition of tangent vectors.

For the associativity, we need to show the commutativity of the outside of the following diagram:

T2TM

T 2M

+T
��

T 3M

T2TM

uT

��

T 3M

T3M

u3

��7
7

7
7

7
7

7
7

T 2M T2M
u //

T3M T2M
+r //_________T3M

T2M

+l

���
�
�

T2M TM
+ //

T2M

TM

+
��

T 3M TT2M
T (u) // TT2M

T2TM

w

��-
-

-

T2TM T 2M
+T

//____

TT2M T 2M
T (+) //

T 2M

T 2M
c
CC�

�
�

T 2M

T2M

u

��

where we have added the dashed arrows, and

u3 = [T (pT )T (p), pT 2T (p), pT 2pT ].
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The bottom right diagram commutes by the associativity of tangent vector addition, and the top
right diagram by preservation of addition. Thus, we only need to show the commutativity of the
left region and the middle region.

To show the left region commutes, we begin by expanding the right composite of that region:

(u3)(+l) = [T (pT )T (p), pT 2T (p), pT 2pT ][[p1, p2]+, p3]

= [[T (pT )T (p), pT 2T (p)]+, pT 2pT ]

Now, since these are two maps into T2, to show they are equal, it suffices to show they are equal
when post-composed by p1 and p2. Indeed, if we consider

(uT )(+T )(u)p1 = [T (pT ), pT 2 ](+T )[T (p), pT ]p1

= [T (pT ), pT 2 ](+T )T (p)

= [T (pT ), pT 2 ]T2(p)(+) by naturality of +,

= [T (pT ), pT 2 ][p1T (p), p2T (p)](+) by definition of T2(f),

= [T (pT )T (p), pT 2T (p)](+)

= (u3)(+l)p1 (by above)

and

(uT )(+T )(u)p2 = [T (pT ), pT 2 ](+T )[T (p), pT ]p2

= [T (pT ), pT 2 ](+T )pT

= [T (pT ), pT 2 ](p2pT ) by coherence of +,

= pT 2pT

= (u3)(+l)p2 (by above)

as required. Thus the left region commutes.

For the middle region, we first calculate

T (u)w = T (u)[T (p1)c, T (p2)c]

= [T (up1)c, T (up2)c]

= [T ([T (p), pT ]p1)c, T ([T (p), pT ]p2)c]

= [T 2(p)c, T (pT )c]

So that the top composite is

[T 2(p)c, T (pT )c](+T )(c)[T (p), pT ]

while the middle composite is

(u3)(+r) = [T (pT )T (p), pT 2T (p), pT 2pT ][p1, [p2, p3]+]

= [[T (pT )T (p), [pT 2T (p), pT 2pT ]+]
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Again, since these are two maps into T2, to show they are equal, it suffices to show they are equal
when post-composed by p1 and p2. Indeed, if we consider

[T 2(p)c, T (pT )c](+T )(c)[T (p), pT ]p1

= [T 2(p)c, T (pT )c](+T )(c)T (p)

= [T 2(p)c, T (pT )c](+T )pT by coherence of c,

= [T 2(p)c, T (pT )c](p2)(pT ) by coherence of +T ,

= T (pT )cpT

= T (pT )T (p) by coherence of c,

= (u3)(+r)p1 (by above)

and

[T 2(p)c, T (pT )c](+T )(c)[T (p), pT ]p2

= [T 2(p)c, T (pT )c](+T )(c)pT

= [T 2(p)c, T (pT )c](+T )T (p) by coherence of c,

= [T 2(p)c, T (pT )c]T2(p)(+) by naturality of +,

= [T 2(p)c, T (pT )c][p1T (p), p2T (p)](+) by definition of T2(f),

= [T 2(p)cT (p), T (pT )cT (p)](+)

= [T 2(p)pT , T (pT )pT ](+) by coherence of c,

= [pT 2T (p), pT 2pT ](+) by naturality of p (twice),

= (u3)(+r)p2

as requred. Thus, the diagram commutes, and T is a monad. 2

We also record how µ interacts with l and c:

Lemma 5.7 If (X, T ) is tangent structure, then cµ = µ, and lµ = p0.

Proof: For the first claim:

cµ = c〈T (p), pT 〉+

= 〈cT (p), cpT 〉+

= 〈pT , T (p)〉+ (by Proposition 2.5)

= 〈T (p), pT 〉+ (by commutativity of +)

= µ

For the second claim,
lµ = l〈T (p), pT 〉+ = 〈p0, p0〉+ = p0

by the unitality of +. 2

It is somewhat surprising that the fact that T is a monad (also discovered independently for
cartesian differential categories in [Manzyuk 2012]) has been overlooked in differential geometry.
This is especially surprising considering the next result: the Kleisi category of this monad is a
generalization of the addition of vector fields.
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Proposition 5.8 If v, w : M // TM are vector fields on M , then the Kleisli composite of v and
w is given by v + w.

Proof: For arbitrary maps in the Kleisi category v : A // TB, w : B // TC, vw is given by the
formula

vT (w)〈T (p), pT 〉+ = 〈vT (wp), vpw〉+ .

But if v and w are vector fields, then wp = vp = 1, so the above simplifies to 〈v, w〉+, as required.
2

This shows that the Kleisli category XT may be of some importance: the maps are generalized
vector fields, while the composition of these vector fields is a generalization of vector field addition.
We were not able to find a reference to these generalized vector fields or their composition in the
literature.

While the Kleisli category appears as a generalization of vector fields, the Eilenberg-Moore
algebras are harder to understand. An algebra α : TM //M describes a way to associate each
tangent vector on the space to another point on the space, in a way that is compatible with addition.
In particular, sending the tangent vector to its base point is an algebra:

Proposition 5.9 If (X, T ) is tangent structure, then for any object M , the projection map pM :
TM //M is an algebra for the monad T .

Proof: We begin by showing that p is a morphism of monads from (T, 0, µ) to the identity monad.
For this, we need to show the diagrams

T Ip
//

T 2

T

T (p) ��

T 2 T
µ // T

I

p
��

T Ip
//

I

T

0 ��

I

I

1

''OOOOOOOOOO

commute. For the first diagram, we have

µp = 〈T (p), pT 〉+ p = 〈T (p), pT 〉p1p = T (p)p

by the properties of additive bundles. The second diagram, 0p = 1, is also an axiom of additive
bundles.

If α : T // S is a morphism of monads, then α sends S-algebras to T -algebras via pre-
composition. Since any object M is canonically an algebra for the identity functor, and p is a
morphism of monads to the identity functor, any M is thus a T -algebra, with structure map
p : TM //M . 2

Of course, any object of the form TM also has an associated free algebra µ : T 2M //TM . For
example, on R2 = T (R), the free algebra structure sends

〈a, b, c, d〉 7→ 〈b+ c, d〉.

Again, it would be interesting to know if this algebra, or other algebras of this monad, occur in the
literature on differential geometry.
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