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Abstract

In 1984, J. Rosický gave an abstract presentation of the structure associated to tangent bun-
dle functors in differential and algebraic geometry. By slightly generalizing this notion, we show
that tangent structure is also fundamentally related to the more recently introduced Cartesian
differential categories. In particular, tangent structure of a trivial bundle is precisely the same
as Cartesian differential structure. We also provide a general result which shows how tangent
structure arises from the manifold completion (in the sense of M. Grandis) of a differential
restriction category. This construction includes all standard atlas-based constructions from dif-
ferential geometry. Furthermore, we tighten the relationship, which Rosický had noted, between
representable tangent structure and synthetic differential geometry, showing how such settings
can be developed from a system of infinitesimal objects. We also show how infinitesimal objects
give rise to dual tangent structure.

Taken together, these results show that tangent structures appropriately span a very wide
range of definitions, from the syntactic and structural differentials arising in computer science
and combinatorics, through the concrete manifolds of algebraic and differential geometry, and
finally to the abstract definitions of synthetic differential geometry.
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1 Introduction

In [Rosický 1984], an abstract description of the properties of the tangent bundle functor on the
category of smooth manifolds was proposed. In particular, the paper showed how a crucial struc-
tural component of differential geometry, the Lie bracket on vector fields, was already present in any
category with such abstract tangent structure. Furthermore, Rosický showed that when tangent
structure has its functor “representable”, in the sense of being of the form ( )D for some object
D, then the resulting setting shared many of the important properties of synthetic differential
geometry. Specifically, he showed that the representing object D was a commutative semigroup
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with each element having d2 = 0, and that there was a (not necessarily commutative) ring R with
a map D // R which satisfies the Kock-Lawvere axiom. All this suggested that a category with
tangent structure was an appropriate categorical doctrine in which an abstract theory of differential
geometry could be developed.

In this paper, we extend Rosický’s work in a number of directions. We begin, in section 2,
by slightly generalizing Rosický’s definition of tangent structure so that the bundles, on which the
definition is based, are allowed to be commutative monoids rather than commutative groups. This
is important as certain key examples arising from computer science and combinatorics do not have
negatives. Removing negatives from the definition in this manner forces a further adjustment to the
crucial equalizer condition in Rosický’s definition. Nonetheless, we show that if the tangent bundles
have negation, our definition is equivalent to Rosický’s. We also indicate some basic examples of
tangent structure and provide some easy consequences of the axioms.

In section 3, we discuss some of the general theory of an arbitrary category with tangent
structure. We begin by defining vector fields and describe some of their properties. Next, we add
the observation that tangent structure implies that the tangent functor and its square are monads,
and describe how the Kleisli composition of the first monad is related to vector field addition.
Rosický was able to define a Lie bracket on the vector fields in (group) tangent categories; we
review some of the basic results concerning this important structure. In a future paper, we hope
to return to these structural aspects and, in particular, show that every (group) tangent category
naturally supports a notion of de Rham cohomology.

In section 4, we demonstrate the fundamental connection between tangent structure and the
more recently introduced notion of Cartesian differential categories. Cartesian differential categories
were first defined in [Blute et al. 2008]; their introduction was motivated not only by the wish to
give a basic categorical semantics for the standard notion of differentiation in multivariable calcu-
lus, but also by the differentials arising in combinatorics [Bergeron et al. 1997], Computer Science
[Abbot thesis, Abbott et al. 2003], and in linear logic [Ehrhard 2001, Ehrhard and Regnier 2003,
Bucciarelli et al. 2010]. In contrast to the standard notion, these latter notions of differentiation
do not have negatives.

In a category with (Cartesian) tangent structure we show that the full subcategory of “dif-
ferential objects”, that is objects whose tangent bundle is “trivial”, form a Cartesian differential
category. Indeed, the axioms of tangent structure on such objects amount precisely to the axioms
of a Cartesian differential category. Moreover, we show that differential objects are fundamental, as
they arise precisely from considering the tangent spaces of the objects in the tangent category. The
relationship between these two theories is summarized by an adjoint between Cartesian differential
categories and (Cartesian) tangent categories.

Section 5 recalls Rosický’s observations concerning the relationship between tangent structure
and synthetic differential geometry. Synthetic differential geometry starts from the notion of a “ring
of line type”. It is natural to look at Weil algebras as a mechanism for producing structure and
thereby providing a basis for differential geometry: this approach can be seen both in [Kock 2006]
and, more recently, from a more abstract perspective, in [Nishimura 2012]. Rosický realized, how-
ever, that demanding that tangent structure be representable already put one in the domain of
synthetic differential geometry. This perspective then provides a minimalistic axiomatic approach
to synthetic differential geometry. Here we expand on Rosický’s ideas, and identify several poten-
tially different “rigs of line type” that occur in any instance of representable tangent structure. In
particular, one of these rigs is commutative, improving upon Rosický’s observations, and tighten-

3



ing the relationship between synthetic differential geometry and representable tangent structure.
We also give a definition of infinitesimal object that arises from considering representable tangent
structure, and consider a notion of a “system of infinitesimals” (similar to Weil algebras) which
can be used to generate representable tangent structure. Finally, we add an important theoretical
observation, which shows that any category with representable tangent structure automatically has
tangent structure on its opposite category.

In the final section, we discuss how tangent structure interacts with partial maps and mani-
folds. Our goal is to show that when one applies the abstract notion of “manifold completion” of
[Grandis 1989] to a differential restriction category, the result has tangent structure. This captures
one of the traditional constructions of the tangent bundle on the category of smooth manifolds.

Taken together, then, the results of this paper demonstrate the central role tangent structure
plays in the abstract theory of differentiation.

2 Tangent structure

We begin by defining tangent categories. These are categories equipped with tangent structure: that
is, a functor together with some natural transformations which satisfy certain coherence and limit
conditions. This is essentially the structure introduced in [Rosický 1984], except that we generalize
to allow additive rather than group bundles. As the idea of the definition is to axiomatize the
properties of a tangent bundle functor, the reader may like to keep the category of smooth manifolds
in mind as a motivating example.

2.1 Additive bundles

The tangent bundle TM of a smooth manifold M is a vector bundle over M . The axiomatization
given in [Rosický 1984], however, does not ask for vector space structure as, for the basic theory,
this is unnecessary. Instead, [Rosický 1984] simply asks that the bundles be commutative groups1.
Here, in order to include some of the syntactic examples motivated from computer science, we shall
take these ideas one step further and only require that the bundles be commutative monoids. For
brevity, we call these additive bundles. We also note that following our earlier works, all composition
will be written in diagrammatic order and product indices will start at zero – although anomalously
we shall talk of the first, second, third projection etc. meaning π0, π1, and π2 respectively.

Definition 2.1 If A is an object in a category X, then an additive bundle over A consists of a
commutative monoid in the slice category X/A. Explicitly, this consists of the following data:

• a map X
p // A such that pullback powers of p exist, that is the pullback of n copies of

X
p //A for each n ∈ N exists; denote these by Xn, with structure maps πi : Xn

//X (with
i ∈ {0, .., n− 1});

• maps + : X2
//X and 0 : A //X, with +p = π0p = π1p and 0p = 1 such that this operation

1Rosický does note that an R-linear structure on the bundles can be recovered by considering the natural endo-
morphisms of the tangent functor.
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is associative, commutative, and unital; that is, each of the following diagrams commute:

X2 X
+

//

X3

X2

〈π0,〈π1,π2〉+〉 ��

X3 X2
〈〈π0,π1〉+,π2〉// X2

X

+��
X2 X

+
//

X2

X2

〈π1,π0〉 ��

X2

X

+

((RRRRRRRRRRR

X2 X
+

//

X

X2

〈p0,1〉 ��

X

X

1

((RRRRRRRRRRR

Note that in the presence of equalizers, one can recover the group of units of an additive bundle
from the equalizer:

XG
e //X2

+−−→−−→
0

X.

This gives two inclusions u = eπ0,−u = eπ1 : XG
//X; the symmetry of X2 induces the negation

XG
− //XG.

Definition 2.2 Suppose that p : X // A and q : Y // B are additive bundles. An additive
bundle morphism consists of a pair of maps f : X // Y , g : A // B so that the following
diagrams commute:

A Bg
//

X

A

p
��

X Y
f // Y

B

q
��

X Y
f

//

X2

X

+ ��

X2 Y2
〈π0f,π1f〉 // Y2

Y

+��
X Y

f
//

A

X

0 ��

A B
g // B

Y

0��

The first diagram says that the pair is a map in the arrow category; the second that the map
preserves addition, and the last that it preserves zeroes. Clearly any additive bundle morphism
will restrict to a morphism between the group of units.

2.2 Definition of tangent categories

With additive bundles defined, we can now, as promised, give the slightly generalized version of the
definition in [Rosický 1984] of a tangent structure. (Note that in 3.10, we show that if the bundles
in the definition are commutative groups, then our definition of tangent structure is equivalent to
Rosický’s).

Definition 2.3 A category X has tangent structure, T = (T, p, 0,+, `, c) in case:

• (tangent functor) T : X // X is a functor with a natural transformation pM : TM //M ,
such that pullback powers of pM exist for each M , and Tn preserves these pullback powers for
each n ∈ N;

• (tangent bundle) there are natural transformations + : T2M // TM (where T2M is the
pullback of pM over itself) and 0M : M //TM making each p : TM //M an additive bundle;

• (vertical lift) there is a natural transformation T
` // T 2 such that for each M

(`M , 0M ) : (p : TM //M,+, 0) // (Tp : T 2M // TM, T (+), T (0))

is an additive bundle morphism;
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• (canonical flip) there is a natural transformation T 2 c // T 2 such that for each M

(cM , 1) : (Tp : T 2M // TM, T (+), T (0)) // (pT : T 2M // TM,+T , 0T )

is an additive bundle morphism;

• (coherence of ` and c) we have c2 = 1, `c = `, and the following diagrams commute:

T 2 T 3
`T

//

T

T 2

` ��

T T 2` // T 2

T 3

T (`)��
T 3 T 3

T (c)
//

T 3

T 3

cT ��

T 3 T 3T (c) // T 3

T 3T 3 T 3
cT

//

T 3

T 3

T 3 T 3cT // T 3

T 3

T (c)��
T 2 T 3

T (`)
//

T 2

T 2

c ��

T 2 T 3T 3

T 3

cT��

T 2 T 3`T // T 3 T 3T (c) //

• (universality of vertical lift) the following is an equalizer diagram:

T2M
v:=〈π0`,π10T 〉T (+) // T 2M

T (p)
−−−−−−−−−−−→−−−−−−−−−−−→

pp0
TM

(i.e. v is the equalizer of T (p) and pp0).

We shall refer to the pair (X,T) as a tangent category.

The canonical example of a tangent category is the category of finite-dimensional smooth man-
ifolds and smooth maps between them. The tangent bundle functor is formed by “thickening” a
manifold at each point by its tangent space: p is then the projection down to the original space.
Clearly, these tangent bundles are additive and, in fact, groups. The canonical flip is a result of

the symmetry of second partial derivatives ∂2f
∂x∂y = ∂2f

∂y∂x , while the vertical lift is a result of the
derivative being a linear operator. The universality of the vertical lift is perhaps the most impor-
tant property of tangent structure; however, to provide intuition for it is also the most difficult: it
is discussed further in section 2.5.

That finite-dimensional smooth manifolds with their tangent bundle is an example of a tangent
category can be verified directly. However, in the final section, we give a general result which
includes this as an example. Specifically, we show that manifolds built out of any differential
restriction category form a tangent category. The proof will be split into two parts: first of all,
in section 4, we show that any Cartesian differential category has tangent structure; this gives the
local description of the required natural transformations. In section 6.3, we then show that tangent
structure lifts to the manifold completion. This also shows that the category of convenient manifolds
and smooth maps between them, with the kinematic tangent bundle of [Kriegl and Michor 1997],
has tangent structure.

In sections 4 and 5, we will discuss two important classes of examples of tangent structure. In
Section 4, we show that any Cartesian differential category has tangent structure. The relation-
ship between the behaviour of differentiation and tangent structure is, in this interpretation, quite
explicit. Moreover, we describe how, on objects with structure similar to those found in Cartesian
differential categories, the tangent structure axioms give the Cartesian differential axioms. In Sec-
tion 5, we explore what may be viewed as the other end of the spectrum, that is the models given
by synthetic differential geometry. When restricted to suitable objects, any model of synthetic
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differential geometry gives an example of tangent structure, with TM = MD. Moreover, repre-
sentable tangent structure is a model of a generalized synthetic differential geometry. These models
illustrate rather explicitly the source of some of the coherence conditions of tangent structure.

An important and immediate effect of the canonical flip is to allow one to switch between the two
different additive structures on the second tangent bundle T 2M . Note that T 2M is automatically
an additive bundle over TM via the maps (pT ,+T , 0T ). But, in fact, since we assume T preserves
the pullbacks used in defining addition, T 2M is also an additive bundle over TM in a different way,
via the maps (T (p), T (+), T (0)). The canonical flip c : T 2 // T 2 is an additive bundle morphism
between these structures, and is in fact an additive bundle isomorphism, since c2 = 1. Thus, the
canonical flip allows one to pass back and forth between the two different additive structures on
T 2M .

We record some other useful consequences of the definition of tangent structure.

Proposition 2.4 If T is tangent structure on X then:

(i) for each f : M // N the pair (Tf, f) : (pM ,+M , 0M ) // (pN ,+M , 0m) is a morphism of
bundles, furthermore, demanding this is equivalent to demanding that pM , +M , and 0M be
natural;

(ii) (c, 1) : (T (p), T (+), T (0)) // (pT ,+T , 0T ) is an isomorphism of bundles;

(iii) (`, 0) : (p,+, 0) // (pT ,+T , 0T ) is a bundle morphism;

(iv) cpT = T (p), and cT (p) = pT ;

(v) T (+) = 〈T (π0)c, T (π1)c〉+T c.

Proof:

(i) Naturality of p, +, and 0 implies that, for each f : M //N the following diagrams commute:

M N
f
//

TM

M

pM ��

TM TN
Tf // TN

N

pN��
TM TN

Tf
//

T2M

TM

+M ��

T2M T2N
〈π0Tf,π1Tf〉// T2N

TN

+N��
TM TN

Tf
//

M

TM

0M ��

M N
f // N

TN

0N��

which are precisely the diagram required to make (Tf, f) an additive bundle morphism.

(ii) Since (c, 1)(c, 1) = (1, 1), (c, 1) is an additive bundle isomorphism between these objects.

(iii) Compose (`, 0) with (c, 1).

(iv) As (c, 1) : (T (p), T (+), T (0)) // (pT ,+T 0T ) is a bundle morphism cpT = T (p). But then
since c2 = 1, we also have cT (p) = pT .

(v) Since c is an additive bundle morphism, we have

T (+)c = T2(c)+T = 〈T (π0)c, T (π1)c〉+T ,

the result then follows by applying c to both sides and using c2 = 1.
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Note that even though T has a natural transformation ` : T // T 2 satisfying coassociativity,
and a natural transformation p : T //I, it is not the case that (T, p, `) is a comonad. The fact that
(`, 0) is an additive bundle morphism tells us `T (p) = p0, rather than the identity. Surprisingly,
however, we shall see in section 3.2 that there is a multiplication µ : T 2 //T which makes (T, 0, µ)
into a monad.

A straightforward observation from [Rosický 1984] provides a basic source of additional exam-
ples:

Proposition 2.5 If (X,T) is a tangent category and A is an object of X, then the slice category
X/A has tangent structure T′, where

T ′(X, f) := (TX, pf) and T ′f = Tf.

See propositions 5.17 and 5.19 for further ways of generating new tangent structure from old.
The following result indicates that one can interchange the two additions on the second tangent

bundle, when the expressions are well-defined, and therefore that the additions are equal if they
share a neutral element:

Lemma 2.6 (Interchange of addition) In a tangent category, for v1, v2, v3, v4 : X // T 2M :

(i) We can interchange addition,

〈〈v1, v2〉T (+), 〈v3, v4〉T (+)〉+T = 〈〈v1, v3〉+T , 〈v2, v4〉+T 〉T (+)

whenever both sides are defined;

(ii) When v1T (p0) = v1p0 and v2T (p0) = v2p0 then

〈v1, v2〉T (+) = 〈v1, v2〉+T

whenever both sides are defined.

Proof:

(i) The requirement that both sides of this equation be defined amounts explicitly to requiring
that the following equations hold:

v1T (p) = v2T (p), v3T (p) = v4T (p), v1pT = v3pT , and v2pT = v4pT .

We have:

〈〈v1, v2〉T (+), 〈v3, v4〉T (+)〉+T = 〈〈v1, v2〉, 〈v3, v4〉〉T2(+) +T

= 〈〈v1, v2〉, 〈v3, v4〉〉+T2 T (+) (naturality of +)

= 〈〈v1, v3〉+T , 〈v2, v4〉+T 〉T (+) (see below).

For the last step, using the naturality of +, +T2T (π0) = T2(π0)+T and +T2T (π1) = T2(π1)+T ,
we have:

〈〈v1, v2〉, 〈v3, v4〉〉+T2 = 〈〈v1, v2〉, 〈v3, v4〉〉〈T2(π0)+T , T2(π1)+T 〉
= 〈〈v1, v2〉, 〈v3, v4〉〉〈〈π0T (π1), π1T (π0)〉+T , 〈π0T (π1), π1T (π1)〉+T 〉
= 〈〈v1, v3〉+T , 〈v2, v4〉+T 〉.
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(ii) The requirement that both sides of this equation be defined amounts explicitly to requiring
v1p = v2p and v1T (p) = v2T (p). The proof uses the Eckmann-Hilton argument to show the
additions are the same:

〈v1, v2〉T (+) = 〈〈v2p0v1〉+, 〈v2, v1p0〉+〉T (+) (interchange)

= 〈〈v2p0, v2〉T (+), 〈v1, v1p0〉T (+)〉+

= 〈〈v2T (p0), v2〉T (+), 〈v1, v1T (p0)〉T (+)〉+

= 〈v2, v1〉+

2

2.3 Morphisms of tangent structure

There will be several instances where morphisms of tangent structure will become important. In
fact, we shall need both a strong and a weak version of these morphisms.

Definition 2.7 Suppose that (X, T, p, 0,+, `, c) and (X′, T ′, p′, 0′,+′, `′, c′) are tangent categories. A
morphism of tangent categories consists of a functor F : X //X′ and a natural transformation
α : TF // FT ′ such that the following diagrams commute:

TF

pF ""FFFFFFFFF
α // FT ′

Fp′

��
F

F

0F
��

F0′

##FFFFFFFF

TM α
// FT ′

T2F

+F
��

α2F // FT ′2

F+′

��
TF α

// FT ′

TF

`
��

α // FT ′

F`′
��

T 2F
(Tα)(αT )

// FT ′2

T 2F

c
��

(Tα)(αT )// FT ′2

Fc′
��

T 2F
(Tα)(αT )

// FT ′2

Say that the morphism is strong if α is invertible, and F preserves the equalizers and pullbacks of
the tangent structure (X, T, p, 0,+, `, c). Let Tan denote the category of (small) tangent categories
and their morphisms.

It is often useful to look at the subcategory of Tan consisting of tangent structures on a single
category X, in which the morphisms all have functor the identity; denote this category by TanX.

In this category, a tangent substructure of T is given by a morphism, α : T′ // T, of tan-
gent structures in which every component αM and T ′(αM ) is monic. This ensures that the map

T ′2M
T ′(α)α // T 2M is monic. This is implied if T (α) is monic as T ′(α)α = αT (α). All the co-

herence conditions of a substructure are forced on the data restricted to the substructure except
the requirements that T′ preserve the pullbacks, and the universality of the vertical lift: these
must be checked independently. An example of such a tangent substructure is given in Section 3.3,
where we show (under certain conditions) that every tangent structure has an associated tangent
substructure in which the additive bundles are groups.
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In fact, every category has a trivial tangent structure, I = (I, 1, 1, 1, 1, 1) given by the identity
functor. It is easily checked that there is always a unique morphism of tangent structures 0 :
I // T = (T, p, 0,+, `, c) so that the identity functor always gives the initial tangent structure in
TanX. However, it also gives the final tangent structure, as p : T // I is also a morphism.

One might then expect that the functor Tn would give the n-fold product of (X,T) in TanX.
However, this is not the case. These functors have an obvious projection πip : Tn // I. It is clear
that the pullback of m copies of Tn along this projection equals Tnm, and there is an addition map

T2n
〈〈πi,pi+n〉+〉i<n // Tn

which satisfies the required coherences. One can also define a canonical flip. For n ≥ 2, however,
there is no vertical lift of the form we consider here: the obvious extension of the vertical lift for T
gives a map from Tn2 to (Tn)2. The structure of these functors, and other “Weil functors”, such as
T 2, are clearly of great interest, but are beyond the scope of this paper (see also [Nishimura 2012]).

Finally, the endomorphisms of a single tangent structure (X, T ) in TanX are often of great
interest. For example, [Kólǎr 1984] shows that for the canonical example (finite-dimensional smooth
manifolds with their tangent bundle), such endomorphisms give a ring isomorphic to R. Similarly,
as we shall see in section 5.3, the endomorphisms of an instance of representable tangent structure
give a rig which satisfies the Kock-Lawvere axiom.

2.4 Cartesian tangent structure

Categories with tangent structure are frequently equipped with products, but we must make addi-
tional assumptions to ensure that the tangent structure interacts well with them.

Definition 2.8 A Cartesian tangent category is a tangent category which has finite products
and for which T preserves these products, and the product functor, with the natural isomorphism
α : T (X)×T (Y ) //T (X×Y ) (inverse of the canonical transformation for the product), is a strong
morphism of tangent structure.

A morphism of Cartesian tangent structures is a morphism of tangent structures (F, α)
for which F preserves products. Let cartTan be the resulting category of Cartesian tangent struc-
tures and their morphisms.

In this paper we shall almost exclusively be concerned with Cartesian tangent categories.
It is worth noting that if X has Cartesian tangent structure it does not follow that the tangent

structure on X/A, given by Proposition 2.5, will be Cartesian. For this to be the case we must
demand that the object A have p : TA //A an isomorphism: one might say such an object, with
respect to the tangent structure, is “still”. It is quite possible for a tangent structure to have every
object still in this sense: in this case, of course, the tangent structure will essentially be the trivial
structure I.

Tangent structures on Cartesian categories allow one to apply the tangent functor in each
variable separately. Let s be the canonical map

T (A×B)
s // TA× TB;

if T is Cartesian tangent structure, this map has an inverse, which we use in the following definition.
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Definition 2.9 Suppose (X,T) is a Cartesian tangent category, and f : A×B // C. We define

TA(f) := TA×B 1×0 // TA× TB s−1
// T (A×B)

Tf // TC

and

TB(f) := A× TB 0×1 // TA× TB s−1
// T (A×B)

Tf // TC.

We can recover Tf from these “partial tangents” much as one can recover a differential from
partial differentials:

Proposition 2.10 If f is as above, then

Tf = 〈s(1× p)TAf, s(p× 1)TBf〉+

Proof: First, note the pairing map into the pullback is well-defined, as the two maps are equal
when post-composed by p:

s−1(1× p)TAfp = s−1(1× p)(1× 0)sT (f)p

= s−1(1× p0)spf (by naturality of p)

= s−1(1× p0)(p× p)f
= s−1(p× p)f (since 0p = 1)

and similarly when the other maps is post-composed by p.
To show that Tf can be recovered as described, consider:

〈s−1(1× p)TAf, s−1(p× 1)TBf〉+ = 〈s−1(1× p0)Tf, s−1(p0× 1)Tf〉+ (as above)

= 〈s−1(1× p0), s−1(p0× 1)〉〈π0Tf, π1Tf〉+

= 〈s−1(1× p0), s−1(p0× 1)〉+ T (f) (naturality of +)

= T (f) (since addition is unital)

as required. 2

2.5 Universality of vertical lift

The universality of the vertical lift is essential to obtaining key behavioural properties of tangent
structure. In particular, it plays a fundamental role in defining the Lie bracket of vector fields
(definition 3.13), showing that tangent spaces have differential structure (theorem 4.15), and show-
ing that representable tangent structure satisfies the Kock-Lawvere axiom (theorem 5.12). Thus,
the universality of the vertical lift, while being perhaps the least intuitive aspect of tangent struc-
ture, is also perhaps the most important. In this section, we record some observations about this
universality which will be useful later.

Recall that the definition of tangent structure uses the following morphism

T2M
v:=〈π0`,π10T 〉T (+) // T 2M.

in which the lift ` is hidden. The behaviour of this morphism is fundamental to understanding the
axiom and we begin by giving a useful lemma on the projections of v.
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Lemma 2.11 vpT = π1 and vT (p) = π0p0.

Proof: For the first claim:

vpT = 〈π0`, π10T 〉T (+)pT

= 〈π0`pT , π10T pT 〉+ (naturality of p)

= 〈π0`cpT , π1〉+

= 〈π0`T (p), π1〉+

= 〈π0p0, π1〉+ (since l is an additive bundle morphism)

= π1 (unit of addition).

For the second claim:

vT (p) = 〈π0`, π10T 〉T (+)T (p)

= 〈π0`, π10T 〉T (+p)

= 〈π0`, π10T 〉T (π1p)

= 〈π0`, π10T 〉T (π1)T (p)

= π0`T (p)

= π0p0 (` is an additive bundle morphism).

2

The universality of the vertical lift can be expressed in several different ways:

Lemma 2.12 In the presence of the earlier axioms, the universality of vertical lift may be equiva-
lently expressed by demanding either of the following:

(i) for any map f : X // T 2M which equalizes2 T (p) and pp0, there is a unique map {f} :
X // TM such that

f = 〈{f}`, fpT 0T 〉T (+)

(ii) the square

M TM
0
//

T2M

M

π0p ��

T2M T 2M
v // T 2M

TM

T (p)��

is a pullback.

Proof:

2Here and throughout the paper, we use “f equalizes g and h” to mean that the map f , when composed with the
subsequent maps g and h, produes the same map; that is, fg = fh. We reserve “equalizer” for those maps which
satisfy this property and, in addition, induce a universal cone for the equalizer diagram.
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(i) Since v is the equalizer, we have a unique map f |v : X // T2M such that f |vv = f . We set
{f} := f |vπ0 and have:

f = f |vv
= f |v〈π0`, π10T 〉T (+)

= 〈f |vπ0`, f |vπ10T 〉T (+)

= 〈f |vπ0`, f |vvpT 0T 〉T (+) (by lemma 2.11)

= 〈f |vπ0`, fpT 0T 〉T (+)

= 〈{f}`, fpT 0T 〉T (+)

The uniqueness of {f} follows from the uniqueness of f |v as

f = 〈{f}`, fpT 0T 〉T (+) = 〈{f}, fpT 〉〈π0`, π10T 〉T (+) = 〈{f}, f〉v

so that 〈{f}, fpT 〉 = f |v.

(ii) Note first that the square commutes as:

vT (p) = 〈π0`, π10〉T (+)T (p) = 〈π0`, π10〉T (π1)T (p)

= π0`T (p) = π0p0

Assuming the square is a pullback, if g equalizes T (p) and pp0 then setting f = gpp the square

X
g //

f

��

T 2(M)

T (p)

��
M

0
// T (M)

commutes. So there is a unique map g|v : X // T2(M) as required.

Conversely, suppose that this square commutes (so gT (p) = f0) and v is the equalizer of T (p)
and pp0 then, as gT (p) = f0 = f0p0 = gT (p)p0 = gpp0, g equalizes T (p) and pp0 and so
there is a unique map g|v : X //T2(M) with g|vv = g. It remains only to show g|vπ0p = f to
establish that the square is a pullback. However, as 0 is monic it suffices to prove g|vπ0p0 = f0
which follows as f0 = gT (p) = g|vvT (p) = g|vπ0p0.

2

We will use the operation { } of this lemma quite frequently in what follows. In particular, note
that we may always write f |v as 〈{f}, fpT 〉.

Before going further, we should justify why the axiom we have called the “universality of vertical
lift” does gives importation on the vertical lift ` : T (A) // T 2(A). The following consequence of
the axiom helps to isolate this:

Lemma 2.13 In any tangent category the following is a (triple) equalizer diagram:

T (A)
` // T 2(A)

T (p) //
p //
pp0

// T (A)
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Proof: We first show that ` equalizes T (p), pT , and T (p)p0. Since (`, 0) is a bundle morphism,
we have

T (A)
` //

p

��

T 2(A)

T (p)

��
M

0
// T (A)

We have:

`T (p)p0 = p0p0 = p0

`T (p) = p0

`pT = `cpT = `T (p) = p0.

Showing that ` equalizes the three maps.
Now suppose we have another map f : X // T 2M which equalizes these three maps: in

particular, f equalizes T (p) and pp0. Thus, we have a unique map 〈{f}, fpT 〉 (using part (i) of
2.12 above) such that:

X
f

))SSSSSSSSSSSSSSSSSS

〈{f},fp〉 ""
T2(A) v

// T 2(A)
T (p) //

pp0
// T (A)

We claim that {f} : X // TM is the required unique map

X
f

))SSSSSSSSSSSSSSSSS

{f} ""
T (A)

`
// T 2(A)

T (p) //

pp0
//p // T (A)

because

f = 〈{f}, f〉v = 〈{f}`, fp0〉T (+) = 〈{f}`, fpp00〉T (+)

= 〈{f}`, fpp0T (0)〉T (+) = 〈{f}`, fT (p)T (0)〉T (+) = 〈{f}l, {f}`T (p)T (0)〉T (+) = {f}`.

2

In particular, as ` is an equalizer it is certainly monic.
We record some further manipulations for the operation { }. In particular we shall use its

interaction with the two additions, the tangent functor, and composition:

Lemma 2.14 For f, g : X // T 2(A) which equalize T (p) and pp0 and have fT (p)p = gT (p)p:

(i) for any k : Z //X, k{f} = {kf};

(ii) {f}p = fT (p)p when the left hand side is defined;
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(iii) {00T } = 0;

(iv) 〈{f}, {g}〉+ = {〈f, g〉T (+)} when either side is defined;

(v) 〈{f}, {g}〉+ = {〈f, g〉+} when both sides are defined;

(vi) T ({f}) = {T (f)cTT (c)}c when the left side is defined;

(vii) for h : A //B, {f}T (h) = {fT 2(h)} when the left side is defined.

Proof:

(i) This follows immediately as {f} is a map to a limit: this can be seen explicitly in the following
calculation k{f} = kf |vπ0 = (kf)|vπ0 = {kf}.

(ii) We have:

fT (p)p = 〈{f}`, fpT 0T 〉T (+)T (p)p

= 〈{f}`, fpT 0T 〉T (π0)T (p)p (+ is a bundle morphism)

= {f}`T (p)p

= {f}p0p ((`, 0) is a bundle morphism)

= {f}p (since 0p = 1).

(iii) We need to show 0 has the same universal property as 00T :

〈0`, 00T pT 0T 〉T (+) = 〈0T (0), 00T 〉T (+) (` is additive, and 0p = 1)

= 0〈T (0), 0T 〉T (+)

= 00T (addition of a zero term).

(iv) If 〈{f}, {g}〉+ is defined then fT (p) = fpp0, gT (p) = gpp0, and (using (ii)) fpp = {f}p =
{g}p = gpp. Thus, gT (p) = gpp0 = fpp0 = fT (p) so that 〈f, g〉T (+) is defined. Also
〈f, g〉T (+)T (p) = fT (p) = fT (p)p0 = 〈f, g〉T (+)T (p)p0 = 〈, g〉pp0 so that {〈f, g〉T (+)} is
defined.

Conversely if {〈f, g〉T(+)} is defined then fT (p) = gT (p) and 〈f, g〉T (+)T (p) = 〈f, g〉T (+)pp0.
However, this means fT (p) = 〈f, g〉T (+)T (p) = 〈f, g〉T (+)pp0 = 〈f, g〉T (+)T (p)p0 = fT (p)p0 =
fpp0. Thus, {f} is defined and similarly {g} is defined. Finally {f}p = fpp = fT (p)p =
gT (p)p = gpp = {g}p so that 〈{f}, {g}〉+ is defined.

Thus, we have shown that if either side is defined the other side is as well.

It remains to show 〈{f}, {g}〉+ has the same universal property as {〈f, g〉T (+)}:

〈〈{f}, {g}〉+ `, 〈f, g〉T (+)pT 〉T (+)

= 〈〈{f}`, {g}`〉T (+), 〈fp0, gp0〉T (+)〉T (+) (` is a morphism of bundles)

= 〈〈{f}`, fp0〉T (+), 〈{g}`, gp0〉T (+)〉T (+) (associativity and commutativity)

= 〈f, g〉T (+).
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(v) Note that either side of this equation can be defined when the other is not! Thus, there are
side conditions which must be checked when using this identity. We start by making these
precise.

Going from left to right: not only must we require that 〈{f}, {g}〉+ is defined but also that
fp = gp in order for {〈f, g〉+} to be defined. To see this note that saying 〈{f}, {g}〉+ is
defined means fT (p) = fpp0, gT (p) = gpp0 and fpp = gpp and requiring fp = gp means
〈f, g〉+ is certainly defined. But also 〈f, g〉 + T (p) = 〈fT (p), gT (p)〉+ = 〈fpp0, gpp0〉+ =
〈fpp0, fppo〉+ = fpp0 = 〈f, g〉+ pp0 so that {〈f, g〉+} is defined.

Going from right to left we require that in addition to {〈f, g〉+} being defined that fT (p) =
fpp0 or gT (p) = gpp0. To see this note that {〈f, g〉+} being defined means fp = gp and so
fpp0 = gpp0, furthermore, assuming (without loss) that fT (p) = fpp0 gives

gT (p) = 〈gpp0, gT (p)〉+ = 〈fpp0, gT (p)〉+ = 〈fT (p), gT (p)〉+

= 〈f, g〉+ T (p) = 〈f, g〉+ pp0 = gpp0

so that {f} and {g} are defined. Finally, {f}p = fpp = gpp = {g}p so that 〈{f}, {g}〉+ is
defined.

The following variation on the previous calculation for universality gives the equality:

〈〈{f}, {g}〉+ `, 〈f, g〉+ p0〉T (+)

= 〈〈{f}`, {g}`〉+, fp0〉T (+) (` is a morphism of bundles)

= 〈〈{f}`, {g}`〉+, 〈fp0, gp0〉+〉T (+) (as fp = gp and adding of zero)

= 〈〈{f}`, fp0〉T (+), 〈{g}`, gp0〉T (+)〉+ (interchange from lemma 2.6)

= 〈f, g〉+ .

(vi) We first need to check that T (f)cTT (c) equalizes the required maps when f does:

T (f)cTT (c)T (pT ) = T (f)cTT (cpT ) = T (f)cTT (T (p))

= T (f)cTT
2(p) = T (f)T 2(p)cT (naturality of c)

= T (fT (p))c = T (fT (p)p0)c (by assumption on f)

= T (f)T 2(p)T (p)T (0)c = T (f)T 2(p)T (p)0T

= T (f)T 2(p)cpT 0T = T (f)cTT
2(p)pT 0T (naturality of c)

= T (f)cTT (cpT )pT 0T = T (f)cTT (c)T (pT )pT 0T .
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We now show that T ({f})c has the same universal property as {T (f)cTT (c)}:

T (f)cTT (c)

= T (〈{f}`, fpT 0T 〉T (+))cTT (c) (by the universal property of {f})
= 〈T ({f})T (`), T (f)T (pT )T (0T )〉T 2(+)cTT (c) (T preserves pullback for T2)

= 〈T ({f})T (`), T (f)T (pT )T (0T )〉cT2T 2(+)T (c) (naturality of c)

= 〈T ({f})T (`)cT , T (f)T (pT )T (0T )cT 〉T 2(+)T (c)

= 〈T ({f})T (`)cT , T (f)T (pT )0T 2〉T (T (+)c) (T (0)c = 0T )

= 〈T ({f})T (`)cT , T (f)T (pT )0T 2〉T (〈π0c, π1c〉+) (c is additive)

= 〈T ({f})T (`)cT , T (f)T (pT )0T 2〉〈T (π0)T (c), T (π1)T (c)〉T (+) (T preserves pullback)

= 〈T ({f})T (`)cTT (c), T (f)T (pT )0T 2T (c)〉T (+)

= 〈T ({f})c`T , T (f)T (pT )c0T 2〉T (+) (coherence equation and naturality of 0)

= 〈T ({f})c`T , T (f)cT pT 2c0T 2〉T (+) (cpT = T (p))

= 〈T ({f})c`T , T (f)cTT (c)pT 20T 2〉T (+) (naturality of p).

(vii) We first need to check that fT 2(h) equalizes the required maps when f does:

fT 2(h)T (p) = fT (T (h)p) = fT (ph) (naturality of p)

= fT (p)T (h) = fT (p)p0T (h) = fT (p)ph0 (naturality of 0)

= fT (p)T (h)p0 (naturality of p)

= fT (ph)p0 = fT (T (h)p)p0 (naturality of p)

= fT 2(h)T (p)p0.

Now, we need to show that {f}T (h) has the same universal property as {fT 2(h)}:

〈{f}T (h)`, fT 2(h)pT 0T 〉T (+) = 〈{f}`T 2(h), fpT 0TT
2(h)〉T (+) (naturality of ` and p0)

= 〈{f}`, fpT 0T 〉T (T2(h))T (+)

= 〈{f}`, fpT 0T 〉T (T2(h)+)

= 〈{f}`, fpT 0T 〉T (+T (h)) (naturality of +)

= 〈{f}`, fpT 0T 〉T (+)T 2(h)

= fT 2(h).

2

Finally, we observe:

Lemma 2.15 Tn preserves the equalizer diagram for the universality of vertical lift.

Proof: The canonical flip can be used to bring the equalization of Tn(T (p)) and Tn(pp0) to the
top level where one can use the fact that Tn preserves pullback powers of pM to show that the
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required map is an equalizer. The basic step of lifting the equalization is given by the following
serially commuting diagram:

T2(TM)

∼=
��

v // T 3M
T (p) //

pp0
//

T (c)c
��

T 2M

c
��

T (T2M)
T (v)

// T 3M
T 2(p) //

T (pp0)
// T

2M

2

3 Some basic theory of tangent structure

3.1 Vector Fields

The notion of a vector field is of central importance in differential geometry, and generalizes to
tangent structures in a natural way.

Definition 3.1 If M is an object of a tangent category (X, T ), a section of pM , that is any w :
M // T (M) with wp = 1M , is a vector field on M . Denote the set of vector fields on M by
χ(M).

The existence of the map v : T2(M) // T 2(M) allows one to define the so-called “Liouville
vector field” on any object of the form T (M) by the map

T (M)
〈1,1〉v // T 2(M).

This is a vector field since, by lemma 2.11, 〈1, 1〉vpT = 〈1, 1〉π1 = 1. Furthermore, every object M
always has a zero vector field 0M : M // T (M), vector fields inherit additive structure from T ,
and this structure is preserved in two different ways:

Proposition 3.2 If M is an object of a tangent category (X,T) with vector fields w1, w2 ∈ χ(M),
then

(i) χ(M) has the structure of a commutative monoid, with w1 + w2 := 〈w1, w2〉+ and 0 := 0M ;

(ii) for any map f : M //N , (w1 + w2)T (f) = w1T (f) + w2T (f) and 0T (f) = 0;

(iii) T (w1 + w2) = (T (w1)c+T T (w2)c)c and T (0) = 0T c.

Proof:

(i) Immediate.

(ii) For the second claim, we have:

〈w1, w2〉+M T (f) = 〈w1, w2〉T2(f) +N (by naturality of +)

= 〈v1, w2〉〈π0T (f), π1T (f)〉+N (by definition of T2)

= 〈w1T (f), w2T (f)〉+N

= w1T (f) + w2T (f).

The result for 0 follows similarly.
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(iii) Here is the calculation:

T (w1 + w2) = T (〈w1, w2〉+)

= T (〈w1, w2〉)T (+)

= T (〈w1, w2〉)〈T (π0)c, T (π1)c〉+T c (since c is an additive bundle isomorphism)

= 〈T (〈w1, w2〉π0)c, T (〈w1, w2〉π1)c〉+T c

= 〈T (w1)c, T (w2)c〉+T c

= (T (w1)c+T T (w2)c)c.

The result for 0 is immediate as c is a morphism of bundles.

2

As we shall see in the next section section, the addition of vector fields is a specific case of
composition in the Kleisli category for the monad on tangent bundles.

3.2 Monad structure of T and T 2

In this section, we show that the axioms for tangent structure imply not only that that T is a
monad but also that T 2 is a monad. The Kleisli category XT , in particular, contains, the vector
fields and their addition.

We begin with an important map which “forgets” a double tangent vector in T 2:

Lemma 3.3 The map

T 2(M)
uM :=〈Tp,pT 〉 // T2M

is a natural transformation from T 2 to T2.

Proof: Let M
f //N be an arbitrary map, and consider

(uM )(T2f) = 〈Tp, pT 〉〈π0T (f), π1T (f)〉 by definition of T2(f),

= 〈T (p)T (f), pTT (f)〉 = 〈T (pf), pTT (f)〉
(T 2f)(uN ) = T 2(f)〈Tp, pT 〉 = 〈T 2(f)T (p), T 2(f)pT 〉

= 〈T (T (f)p), pTT (f)〉 = 〈T (pf), pTT (f)〉 by naturality of p;

so that the two are equal, as required. Alternatively, one can immediately see this as u = ∆(p ×
T (p)). 2

In the context of synthetic differential geometry, a right inverse for u is considered to provide
an affine connection [Kock and Reyes 1979]: we do not pursue that idea here.

We can now give the monad structure of T .

Proposition 3.4 If (X,T) is a tangent category, then T is a monad, with unit M
0 // TM , and

multiplication µ1 given by the composite

T 2M
u // T2M

+ // TM.
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Proof: By definition, the 0 and + are natural, and we have shown u is natural above. Thus, we
only need to check the unit and associativity axioms. For one unit axiom, consider

T (0)u+ = T (0)〈T (p), p〉+

= 〈T (0)T (p), T (0)p〉+

= 〈T (0p), p0〉+ by functoriality of T and naturality of p,

= 〈T (1), p0〉+ by coherence for p,

= 〈1, p0〉+

= 1 by the unit axiom for the addition of tangent vectors.

For the other unit axiom, consider

0〈T (p), p〉+ = 〈0T (p), 0p〉+

= 〈0cp, 1〉+ by coherence of c and p,

= 〈T (0)p, 1〉+ since c is an additive bundle morphism,

= 〈p0, 1〉+ by naturality of p,

= 1 by the unit axiom for the addition of tangent vectors.

For the associativity, we need to show the commutativity of the outside of the following diagram:

T2TM

T 2M

+T
��

T 3M

T2TM

uT

��

T 3M

T3M

u3

��7
7

7
7

7
7

7
7

T 2M T2M
u //

T3M T2M
+r //_________T3M

T2M

+l

���
�
�

T2M TM
+ //

T2M

TM

+
��

T 3M TT2M
T (u) // TT2M

T2TM

w

��-
-

-

T2TM T 2M
+T

//____

TT2M T 2M
T (+) //

T 2M

T 2M
c
CC�

�
�

T 2M

T2M

u

��

where we have added the dashed arrows, and

u3 = 〈T (pT )T (p), pT 2T (p), pT 2pT 〉, w = 〈T (π0)c, T (π1)c〉.

The bottom right diagram commutes by the associativity of tangent vector addition, and the top
right diagram since c preserves addition. Thus, we only need to show the commutativity of the left
region and the middle region.

To show the left region commutes, we begin by expanding the right composite of that region:

(u3)(+l) = 〈T (pT )T (p), pT 2T (p), pT 2pT 〉〈〈π0, π1〉+, π2〉
= 〈〈T (pT )T (p), pT 2T (p)〉+, pT 2pT 〉
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Now, since these are two maps into T2, to show they are equal, it suffices to show they are equal
when post-composed by π0 and π1. Indeed, if we consider

(uT )(+T )(u)π0 = 〈T (pT ), pT 2〉(+T )〈T (p), pT 〉π0

= 〈T (pT ), pT 2〉(+T )T (p)

= 〈T (pT ), pT 2〉T2(p)(+) by naturality of +,

= 〈T (pT ), pT 2〉〈π0T (p), π1T (p)〉(+) by definition of T2(f),

= 〈T (pT )T (p), pT 2T (p)〉(+)

= (u3)(+l)π0 (by above)

and

(uT )(+T )(u)π1 = 〈T (pT ), pT 2〉(+T )〈T (p), pT 〉π1

= 〈T (pT ), pT 2〉(+T )pT

= 〈T (pT ), pT 2〉(π2pT ) by coherence of +,

= pT 2pT

= (u3)(+l)π1 (by above)

as required. Thus the left region commutes.

For the middle region, we first calculate

T (u)w = T (u)〈T (π0)c, T (π1)c〉
= 〈T (uπ0)c, T (uπ1)c〉
= 〈T (〈T (p), pT 〉π0)c, T (〈T (p), pT 〉π1)c〉
= 〈T 2(p)c, T (pT )c〉

So that the top composite is

〈T 2(p)c, T (pT )c〉(+T )(c)〈T (p), pT 〉

while the middle composite is

(u3)(+r) = 〈T (pT )T (p), pT 2T (p), pT 2pT 〉〈π0, 〈π1, π2〉+〉
= 〈〈T (pT )T (p), 〈pT 2T (p), pT 2pT 〉+〉

Again, since these are two maps into T2, to show they are equal, it suffices to show they are equal
when post-composed by π0 and π1:

〈T 2(p)c, T (pT )c〉(+T )(c)〈T (p), pT 〉π0

= 〈T 2(p)c, T (pT )c〉(+T )(c)T (p)

= 〈T 2(p)c, T (pT )c〉(+T )pT by coherence of c,

= 〈T 2(p)c, T (pT )c〉(π1)(pT ) by coherence of +T ,

= T (pT )cpT

= T (pT )T (p) by coherence of c,

= (u3)(+r)π0 (by above)
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and

〈T 2(p)c, T (pT )c〉(+T )(c)〈T (p), pT 〉π1

= 〈T 2(p)c, T (pT )c〉(+T )(c)pT

= 〈T 2(p)c, T (pT )c〉(+T )T (p) by coherence of c,

= 〈T 2(p)c, T (pT )c〉T2(p)(+) by naturality of +,

= 〈T 2(p)c, T (pT )c〉〈π0T (p), π1T (p)〉(+) by definition of T2(f),

= 〈T 2(p)cT (p), T (pT )cT (p)〉(+)

= 〈T 2(p)pT , T (pT )pT 〉(+) by coherence of c,

= 〈pT 2T (p), pT 2pT 〉(+) by naturality of p (twice),

= (u3)(+r)π1.

Thus, the diagram commutes, and T is a monad. 2

The fact that T is a monad seems to have been largely overlooked in the differential geome-
try literature.3 This is perhaps surprising as the Kleisli category of this monad gives a natural
generalization of the addition of vector fields:

Proposition 3.5 If v, w : M // TM are vector fields on M , then the Kleisli composite of v and
w (denoted by v;µ1 w) is precisely v + w.

Proof: For arbitrary maps in the Kleisi category f : A // TB, g : B // TC, f ;µ1 g is given by
the formula

fT (g)µ1 = fT (g)〈T (p), pT 〉+ = 〈fT (gp), fpg〉+ .

But if f and g are vector fields, then fp = gp = 1, so the above simplifies to 〈f, g〉+, as required.
2

This shows that the maps of the Kleisli category XT are generalized vector fields, while the
composition of these vector fields generalizes vector field addition. These generalized vector fields
do appear in differential geometry literature as “push forwards” of vector fields, however, the Kleisli
composition seems to have largely escaped notice.

We turn now to investigating how µ1 interacts with ` and c. We start with:

Lemma 3.6 If (X, T ) is tangent structure, then cµ1 = µ1, and `µ1 = p0.

Proof: For the first claim:

cµ1 = c〈T (p), pT 〉+

= 〈cT (p), cpT 〉+

= 〈pT , T (p)〉+ (by Proposition 2.4)

= 〈T (p), pT 〉+ (by commutativity of +)

= µ1

3The fact that T is a monad for Cartesian differential categories was independently noted in [Manzyuk 2012].

22



For the second claim,
`µ1 = `〈T (p), pT 〉+ = 〈p0, p0〉+ = p0

as p0 is the unit of +. 2

Next we observe that c is a self-distributive law which shows that T 2 is also a monad:

Proposition 3.7 If (X, T ) is tangent structure, then c : T 2 //T 2 is a distributive law of (T, η1, µ1)
(where η1 = 0) over itself.

Proof: The two equations relating the units are T (0)c = 0T and 0T c = T (0) are the same equation
(since c2 = 1), and are true since c is an additive bundle morphism.

The equations relating the multiplications are also equivalent, again since c2 = 1. Thus, it
suffices to only prove one of them. We shall prove the equation cT (c)µ1 = T (µ1)c. We have

cTT (c)T (pT ) = cTT (cpT )

= cTT (T (p)) (c is a bundle morphism)

= cTT
2(p)

= T 2(p)c (naturality of c).

cTT (c)pT 2 = cT pT c (naturality of c)

= T (pT )c (c is a bundle morphism).

So the left side reduces to

〈T 2(p)c, T (pT )c〉+T = T (〈T (p), pT 〉)〈T (π0)c, T (π1)c〉+T

= T (〈T (p), pT 〉)T (+)c (c is an additive bundle morphism)

= T (µ1)c.

2

In particular, note that this gives two monads which we may style as (T, η1, µ1), where η1 := 0
and µ1 := 〈p, T (p)〉+ = 〈T (p), p〉+ = u+, and (T 2, η2, µ2) where η2 := 00 and µ2 := T (c)µ1T (µ1).

Proposition 3.8 `, 0, T (0) : T // T 2 are morphisms of monads from (T, η1, µ1) to (T 2, η2, µ2),
and p, T (p) : T 2(A) // T (A) are morphisms of monads from (T 2, η2, µ2) to (T, η1, µ1).

Proof: We shall leave the proof that 0, T (0), p, and T (p) are morphisms to the reader and
concentrate on `. It is useful to unwind the definition of µ2 before starting this proof:

µ2 = T (c)µ1T (µ1) = T (c)〈T (p), p〉+ T (µ1) = 〈T 2(p), pc〉+ T (µ1)

= 〈T (T (p)µ1), pcT (µ1)〉+ = 〈T (T (p)〈T (p), p)〉+), pc〈T 2(p), T (p)〉T (+)

= 〈〈T 2(pp), T (pp)〉T (+), 〈pT 2(p)c, pp〉T (+)〉+
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We need to prove η1` = η2 and µ` = `T 2(`)µ2 which follows by:

η1` = 0` = 0T (0) = η2

`T 2(`)µ2 = `T 2(`)〈〈T 2(pp), T (pp)〉T (+), 〈pT 2(p)c, pp〉T (+)〉+

= 〈〈`T 2(`pp), `T 2(`)T (pp)〉T (+), 〈`T 2(`)pT 2(p)c, `pp`〉T (+)〉+

= 〈〈`T 2(p0p), `T (p)T (`p)〉T (+), 〈`pT 2(`T (p))c, p0p`〉T (+)〉+

= 〈〈`T 2(p), p0T (p0)〉T (+), 〈p0T 2(p0)c, p`〉T (+)〉+

= 〈〈T (p)`, p0T (p0)〉T (+), 〈p0T 2(p0)c, p`〉T (+)〉+

= 〈T (p)`, p`〉+ = 〈T (p), p〉+ `

= µ1`.

2

While the Kleisli category for T is easily seen as generalizing vector field addition, its Eilenberg-
Moore category seems to be harder to understand. An algebra α : TM //M for T describes a
way to associate each tangent vector on the space to another point on the space, in a way that is
compatible with addition. In particular, sending the tangent vector to its base point is always an
algebra:

Proposition 3.9 If (X,T) is a tangent category, then for any object M , the projection map pM :
TM //M is an algebra for the monad T .

Proof: We begin by showing that p is a morphism of monads from (T, 0, µ) to the identity monad.
For this, we need to show the diagrams

T Ip
//

T 2

T

T (p) ��

T 2 T
µ1 // T

I

p
��

T Ip
//

I

T

0 ��

I

I

1

''OOOOOOOOOO

commute. For the first diagram, we have

µ1p = 〈T (p), pT 〉+ p = 〈T (p), pT 〉π0p = T (p)p

by the properties of additive bundles. The second diagram, 0p = 1, is also an axiom of additive
bundles.

If α : T // S is a morphism of monads, then α sends S-algebras to T -algebras via pre-
composition. Since any object M is canonically an algebra for the identity functor, and p is a
morphism of monads to the identity functor, p : TM //M is a T -algebra. 2

Of course, any object of the form TM also has an associated free algebra µ : T 2M //TM . For
example, on R2 = T (R), the free algebra structure sends

(a, b, c, d) 7→ (b+ c, d).

It would be interesting to know if algebras of this monad are used in the literature on differential
geometry: we have not been able to find such a use.
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3.3 Group tangent structure

As noted earlier, the definition of tangent structure we give here only asks that the bundles be
additive (i.e. commutative monoids). In Rosický’s original definition, the bundles were assumed to
be commutative groups. Here we shall refer to a tangent category in which the bundles are groups as
a group tangent category or simply a tangent category with negatives. Rosický’s definition,
however, was also different in another respect: he had an alternate form for the universality of the
vertical lift. Rosický’s simply asked that the following be an equalizer diagram:

TM
` // T 2M p //

T (p) //

pp0
// TM

Recall that our definition asks that the following be an equalizer diagram:

T2(M)
v // T 2M

T (p) //

pp0
// TM

(where v := 〈π0`, π10T 〉T (+)). We have already seen in Lemma 2.13 that our definition implies
Rosický’s condition. We now show that under the assumption that the bundles are groups the
reverse implication holds:

Lemma 3.10 In any category with group tangent structure the requirement that ` is an equalizer
of T (p), p, and pp0 is, in the presence of the other axioms, equivalent to the universality of vertical
lift.

Thus, in the presence of negatives, our definition is exactly equivalent to Rosický’s, but, for
mere additive bundles in our sense, Definition 2.3 remains the appropriate one.

Proof: Suppose all the other axioms for tangent structure hold except the universality of vertical
lift, and that ` is the equalizer of the three maps. As the additive bundles have negatives, there is
a natural transformation − : T // T making each TM into an abelian group object over M .

We need to establish that v is the equalizer of T (p) and pp0, so suppose we have a map f which
equalizes T (p) and pp0. Then the map

X
〈f,fp0T (−)〉T (+) // T 2M

equalizes T (p), p, T (p)p0, as

〈f, fp0T (−)〉T (+)T (p) = fT (p) = fpp0

〈f, fp0T (−)〉T (+)pp0 = 〈f, fp0T (−)〉T (+)T (p)p0 = fT (p)p0 = fpp0

〈f, fpT 0T (−)〉T (+)p = 〈fp, fp0p−〉+ = 〈fp, fp−〉+ = fpp0

and hence, by the universality of `, there is a unique map {f} : X //TM with {f}` = 〈f, fp0T (−)〉T (+).
However, this gives the required map for the universality of v, as

〈{f}`, fp0〉T (+) = 〈〈f, fp0TT (−)〉T (+), fpT0〉T (+)

= 〈f, 〈fp0TT (−), fpT0〉T (+)〉T (+)

= 〈f, fp0〉T (+) = f.
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2

In a group tangent category there are some further useful properties of { } along the lines of
Lemma 2.14 which we take the opportunity to record at this stage:

Lemma 3.11 Suppose (X,T) is a tangent category with negatives. If f, g : X // T 2M , then:

(i) {f}` = 〈f, fp0T (−)〉T (+) whenever the left side is defined;

(ii) 〈f, g〉T (+)− = 〈f−, g−〉T (+) whenever either side is defined;

(iii) {f−} = {f}− whenever either side is defined;

(iv) {fT (−)} = {f}− whenever either side is defined;

(v) {f−T (−)} = {f} whenever either side is defined.

Proof:

(i) As 〈{f}`, fp0〉T (+) = f then {f}` = 〈f, fp0T (−)〉T (+).

(ii) We show 〈f−, g−〉T (+) is the negation of 〈f, g〉T (+) as:

〈〈f, g〉T (+), 〈f−, g−〉T (+)〉+
= 〈f + f−, g + g−〉T (+) (interchange from lemma 2.6)

= 〈fp0, gp0〉T (+) (negation)

= 〈f`p, g`p〉T (+) (` is a morphism)

= 〈f`, g`〉T 2(+)p (p is natural)

= 〈f, g〉T (+)`p (` is natural)

= 〈f, g〉T (+)p0 (` is a morphism)

(iii) We would like to show that {f}− satisfies the same universal property as {f−}. For this we
have:

〈{f}−`, f−p0〉T (+) = 〈{f}`−, f−p0〉T (+) (` is a morphism of bundles)

= 〈{f}`−, fp0−〉T (+) (as −p = p and 0 = 0−)

= 〈{f}`, fp0〉T (+)− (by (ii))

= f − .

(iv) We would like to show that {f}− satisfies the same universal property as {fT (−)}. For this
we have the calculation

〈{f} − `, fT (−)p0〉T (+) = 〈{f}`T (−), fp0T (−)〉T (+)

= 〈{f}`, fp0〉T (+)T (−) = fT (−).

(v) Immediate from the above, as {f−T (−)} = {f−}− = {f}−− = {f}.
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2

As noted in the section on additive bundles, from any additive bundle one can extract the
group of units via an equalizer. Here, we show that under certain conditions, extracting the group
of units from a tangent structure bundle gives an instance of group tangent structure (note that
to make certain calculations clearer, we extract the units via a pullback rather than an equalizer).
This extraction of group tangent structure also illustrates the sense in which tangent structure
is “structure” rather than “property”, as a given category may support many different tangent
structures.

Proposition 3.12 Suppose (X,T) is a tangent category in which, for each M , the pullback diagram

Gr(M)

pGr
��

er // T2r(M)

(+)r
��

M
0r
// Tr(M)

exists and is preserved by each Tn. Then (X,G) is a tangent substructure in which the additive
bundles are groups. Furthermore, if (X,T) is Cartesian, then so is (X,G).

Proof: Note first that G is a subfunctor of T , via the monic map GM
e // T2M

π0 // TM and
that the symmetry map of T2 induces the inverse of the group tangent bundles. The majority of
tangent structure for T then restricts to the subfunctor G: the only difficulty is to show that Gn

preserve the required pullbacks and that the vertical lift is universal.
To show Gn preserves the required pullbacks, note that, as G is defined as a limit of a diagram

of natural transformations, G immediately preserves all limits which are preserved by the functors
in that diagram. These functors are: the identity functor, T , and T2 which, by assumption, preserve
the defining diagrams of Gn. Now Gn+1 is defined using a diagram in GnT , GnT2, and Gn, this
inductively shows that Gn+1 preserves all the limits preserved by Gn,Tand T2.

For the universality of vertical lift, by Proposition 3.10, it suffices to show that ` is the required
equalizer. For this, we need to know that if a map f : X // T 2M (which equalizes T (p), pT , and
T (p)p0) has a negation, then so does {f} : X // TM . But this follows by lemma 2.14 (v), since
we have {f}+ {g} = {f + g} and {00T } = 0, so that the negative for f gives the negative for {f}.

Finally, if T is Cartesian, then a map f : X // TG(X × Y ) has an additive inverse if and only
if both fT (π0) and fT (π1) do, so that TG is Cartesian. 2

3.4 Lie bracket

In this section, we recall the observations of [Rosický 1984] on the Lie bracket of vector fields in this
general setting. It is a very basic result of differential geometry that the vector fields on a differential
manifold organise themselves into a Lie algebra: the standard proof (which is straightforward) uses
the fact that vector fields correspond to derivations on the continuous functions on the manifold.
The observation that Rosický made, however, is fundamentally more sophisticated as it does not
rely on a representation of vector fields as derivations. Unfortunately, it is also harder4 to prove!

4We are very grateful to Rosický for providing us with the notes on his proof of the Jacobi identity [Rosický notes].
The notes were in Czech, handwritten, and some 70 pages long! Furthermore, the proof used the existence of some
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Indeed, below it should be noted that we have included a proof of everything except the Jacobi
identity itself. As we shall discuss further below, there is every reason to believe that this identity
does hold, however, we were unable to produce an elementary proof suitable for this exposition.

In this section, we shall work over a fixed object M , and assume that its additive tangent
bundle p : TM //M is a group bundle: the existence of negation is fundamental in defining the
Lie bracket. To reduce notational overhead and to increase readability, given f, g : X // T (M),
instead of 〈f, g〉+ we will write f + g, and for f ′, g′ : X // T 2(M), instead of 〈f ′, g′〉T (+) we will
write f ′ ⊕ g′. However, we shall continue to write negatives in postfix.

Lemma 3.13 In a group tangent category with vector fields w1, w2 ∈ χ(M), the morphism

w1T (w2) + w2T (w1)c−

is well-defined and equalizes T (p) and pp0.

Proof: To show this is well-defined, we must show that these two maps have the same value when
post-composed by pT :

w1T (w2)pT = w1pw2 = w2 = w2T (w1p) = w2T (w1)T (p) = w2T (w1)cpT = w2T (w1)c−pT .

For the second claim:

(w1T (w2) + w2T (w1)c−)T (p)

= w1T (w2)T (p) + w2T (w1)c−T (p) (by naturality of +)

= w1T (w2p) + w2T (w1)pT −
= w1 + w2pw1 −
= w1 + w1− = 0

(w1T (w2) + w2T (w1)c−)pp0

= w1T (w2)pp0 = w1pw2p0 = 0

2

We now use the characterization of the universality of vertical lift in lemma 2.12 (i) to define
the Lie bracket of two vector fields.

Definition 3.14 In a group tangent category with vector fields w1, w2 ∈ χ(M), the Lie bracket
of w1 and w2 is defined to be the morphism

[w1, w2] := {w1T (w2) + w2T (w1)c−} : M // TM.

Here are some useful identities for the Lie bracket:

Lemma 3.15 If x, y ∈ χ(M) then:

(i) xT (0)c = xT (y)c+ xT (y−)c;

limits which, here, we would prefer not to assume. Nonetheless the notes contained some interesting observations
which are more discussed below.
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(ii) 0T (x)c = yT (x)c⊕ y−T (x)c;

(iii) [x, y]` = (xT (y) + yT (x−)c)⊕ 0T (y−);

(iv) [x, y]` = (xT (y)⊕ y−T (x)c) + x−T (0).

Proof:

(i) xT (0)c = xT (y + y−)c = (xT (y)⊕ xT (y−))c = xT (y)c+ xT (y−)c;

(ii) 0T (x)c = (y + y−)T (x)c = (yT (x) + y−T (x))c = yT (x)c⊕ y−T (x)c;

(iii) We use the identity {f}` = f ⊕ fp0T (−) of Lemma 3.11 (ii) and the fact that (xT (y) +
yT (x)c−)p = xT (y)p = y to obtain:

[x, y] = {xT (y) + yT (x)c−}` = {xT (y) + yT (x−)c}`
= (xT (y) + yT (x−)c)⊕ y0T (−) = (xT (y) + yT (x−)c)⊕ 0T (y−).

(iv) Observe that 0T (y−) = y − 0 = y − T (0)c so that by (iii):

[x, y]` = (xT (y) + yT (x−)c)⊕ y−T (0)c

= (xT (y) + yT (x−)c)⊕ (y−T (x)c+ y−T (x−)c) (by (i))

= (xT (y)⊕ y−T (x)c) + (yT (x−)c⊕ y−T (x−)c) (by Lemma 2.6 (i))

= (xT (y)⊕ y−T (x)c) + 0T (x−)c (by (ii))

= (xT (y)⊕ y−T (x)c) + x−T (0).

2

In [Rosický notes] an alternative formulation of the Lie bracket is given which relates it to the
monad on the second tangent bundle:

Lemma 3.16 In any group tangent category with vector fields w1, w2 ∈ χ(M), the following dia-
gram commutes:

M

[w1,w2]

��

w1 // T (M)
T (w2)// T 2(M)

T 2(w1)// T 3(M)
T 3(w2) // T 4M

−T (−)
��

T 4(M)

µ2
��

T (M)
`

// T 2(M)

It is useful in this lemma to use the unwound form of µ2 given in Lemma 3.8, µ2 = (T 2(pp)⊕
T (pp)) + (pT 2(p)c ⊕ pp) and to note some of its properties. In particular, by a straightforward
calculation, when x and y are vector fields, we have

xT (y)T 2(y−T (x−)c)µ2 = 0T (0) = y−T (x−)cT 2(xT (y))µ2.
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Thus, this operation on double vector fields of the form xT (y) and their flips has an inverse. The
operation µ2 on vector field pairs, however, is not commutative.
Proof: We have the following calculation:

w1T (w2T (w1T (w2)))−T (−)µ2

= w1−T (w2−T (w1T (w2)))µ2

= w1−T (w2−T (w1T (w2)))(T 2(pp)⊕ T (pp)) + (pT 2(p)c⊕ pp)
= (w1−T (w2−⊕ w1−T (w2)) + (w2−T (w1)c⊕ w1T (w2))

= (w1−T (0) + (w2−T (w1)c⊕ w1T (w2))

= {w1T (w2) + w2T (w1)c−}` (by Lemma 3.15 (iv))

= [w1, w2]`

2

We are now in a position to describe the fundamental properties of the Lie bracket. While we
do prove the first three identities, recall that we shall not present a proof of the Jacobi identity:

[w1, [w2, w3]] + [w3, [w1, w2]] + [w2, [w3, w1]] = 0 (Jacobi identity)

Rosický did send to us his proof [Rosický notes] of this identity, however, his proof is altogether
too long to be included here, and, in addition, uses some limits which we would prefer to avoid.
We hope to return to this identity at a later date to provide not only an elementary proof but also
to pursue some of its consequences.

Theorem 3.17 [Rosický 1984] In any group tangent cateogry with vector fields w1, w2, w3 ∈ χ(M):

(i) [w1, w2] is a vector field;

(ii) [w1 + w2, w3] = [w1, w3] + [w2, w3];

(iii) [w1, w2]− = [w2, w1];

Proof:

(i) We have:

[w1, w2]p = {w1T (w2) + w2T (w1)c−}p
= (w1T (w2) + w2T (w1)c−)pp

= w1T (w2)pp = w1pw2p = 1

(ii) Consider

[w1 + w2, w3] = {(w1 + w2)T (w3) + w3T (w1 + w2)c−}
= {(w1T (w3) + w2T (w3)) + (w3T (w1)c+ w3T (w2)c)−}
= {(w1T (w3) + w3T (w1)c−) + (w2T (w3) + w3T (w1)c−)}
= {(w1T (w3) + w3T (w1)c−)}+ {(w2T (w3) + w3T (w1)c−)} by 2.14 (v)

= [w1, w3] + [w2, w3]
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(iii) As ` is monic [w1, w2] = [w2, w1]− if and only if [w1, w2]` = [w2, w1]−` . We then have the
following argument:

[w1, w2]` = (w1T (w2)⊕ w2−T (w1)c) + w1−0c (by lemma 3.15 (iv))

= ((w1T (w2)c+ w2−T (w1))⊕ w1−0)c (c flips + and ⊕)

= ((w1T (w2)c+ w2−T (w1))⊕ w10T (−))c

= {w1T (w2)c+ w2T (w1)−}`c (by lemma 3.15 (iii))

= {w1T (w2)c+ w2T (w1)−}`
= {w2T (w1) + w1T (w2)c−}−` (by Lemma 3.11 (iii))

= [w2, w1]−`

2

In [Rosický 1984] it is noted that this abstract definition of the Lie bracket does correspond to
the usual notion for categories of smooth manifolds, and to the definition in synthetic differential
geometry (SDG): for a discussion of SDG and of representable tangent structure see Section 5
below.

4 Cartesian differential categories and tangent structure

As discussed in the introduction, Cartesian differential categories were defined in [Blute et al. 2008]
and capture several different notions of differentation: ordinary calculus, differentials in linear logic
[Ehrhard and Regnier 2003], and differentials in combinatorics [Bergeron et al. 1997]. Our goal is
not only to show that each Cartesian differential category gives an example of tangent structure, but
also that “differential objects” in a tangent category provide an equivalent way to view Cartesian
differential categories. As a result, we will show that Cartesian differential categories are in an
adjoint relationship with Cartesian tangent categories. We shall also prove that an alternative way
to extract the differential objects of a category with tangent structure is to consider its tangent
spaces. These results show that Cartesian differential categories have a significant role to play in
the study of tangent structure.

4.1 Cartesian differential categories

One way to view the axiomatization of Cartesian differential categories is as an abstraction of the
Jacobian of a smooth map f : Rn //Rm. One ordinarily thinks of the Jacobian as a smooth map

J(f) : Rn // Lin(Rn,Rm).

Uncurrying, this means the Jacobian can also be seen as a smooth map

J(f) : Rn × Rn // Rm

which is linear in its first variable. A Cartesian differential category asks for a operation of this
type, satisfying the axioms described below. To express the axioms, one needs the ability to add
maps. However, requiring the category to be enriched in commutative monoids would be too strong,
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as the central example (smooth maps between Cartesian spaces) is not. One instead works with
Cartesian left additive categories, in which addition is only preserved by composition on the left.5

The exact definition can be found in [Blute et al. 2008].

Definition 4.1 A Cartesian differential category is a Cartesian left additive category with an
operation

X
f // Y

X ×X
D(f)

// Y

(called “differentiation”) such that

[CD.1] D(f + g) = D(f) +D(g) and D(0) = 0;

[CD.2] 〈a+ b, c〉D(f) = 〈a, c〉D(f) + 〈b, c〉D(f) and 〈0, a〉D(f) = 0;

[CD.3] D(π0) = π0π0, and D(π1) = π0π1;

[CD.4] D(〈f, g〉) = 〈D(f), D(g)〉;

[CD.5] D(fg) = 〈D(f), π1f〉D(g);

[CD.6] 〈〈a, 0〉, 〈c, d〉〉D(D(f)) = 〈a, d〉D(f);

[CD.7] 〈〈0, b〉, 〈c, d〉〉D(D(f)) = 〈〈0, c〉, 〈b, d〉〉D(D(f));

It may be helpful to give the reader an intuition for these axioms. [CD.1] says that differ-
entiation preserves addition, [CD.2] that the derivative is additive in its first variable. [CD.3]
and [CD.4] demand that differentiation is compatible with the product structure of the category.
[CD.5] is the chain rule. [CD.6] is a formulation of the fact that the derivative is linear in its first
variable, and [CD.7] represents the symmetry of second partial derivatives.

We begin with an alternative version of these axioms which is more appropriate for tangent
structure.

Proposition 4.2 The axioms for a Cartesian differential category are equivalently given by replac-
ing [CD.6] and [CD.7] with the following axioms:

• [CD.6′] 〈〈a, 0〉, 〈0, d〉〉D(D(f)) = 〈a, d〉D(f);

• [CD.7′] 〈〈a, b〉, 〈c, d〉〉D(D(f)) = 〈〈a, b〉, 〈c, d〉〉D(D(f)).

Proof: Assume that D satisfies the usual set of axioms. Clearly, it then satisfies [CD.6′], by
setting c = 0. For [CD.7′], consider:

〈〈a, b〉, 〈c, d〉〉D2f

= 〈〈a, 0〉+ 〈0, b〉, 〈c, d〉〉D2f

= 〈〈a, 0〉, 〈c, d〉〉D2f + 〈〈0, b〉, 〈c, d〉〉D2f by [CD.2],

= 〈a, d〉D2f + 〈〈0, c〉, 〈b, d〉〉D2f by [CD.6] and [CD.7],

= 〈a, d〉D2f + 〈〈0, c〉, 〈b, d〉〉D2f by [CD.6] and [CD.7],

= 〈〈a, 0〉, 〈b, d〉D2f + 〈〈0, c〉, 〈b, d〉〉D2f by [CD.6] again,

= 〈〈a, c〉, 〈b, d〉〉D2f by [CD.2].

5These are, in fact, examples of so called skew enriched categories following [Street 2012].
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as required.
Now assume that D satisfies the alternate set of axioms, with [CD.6] and [CD.7] replaced

with [CD.6′] and [CD.7′]. Clearly, it then satisfies [CD.7], by setting a = 0. To show that it
satisfies [CD.6], consider:

〈〈a, 0〉, 〈b, d〉〉D2f

= 〈〈a, b〉, 〈0, d〉〉D2f (by [CD.7′])

= 〈〈a, 0〉, 〈0, d〉〉D2f + 〈〈0, b〉, 〈0, d〉〉D2f (by [CD.2])

= 〈a, d〉Df + 〈〈0, 0〉, 〈b, d〉〉D2f (by [CD.6′] and [CD.7′])

= 〈a, d〉Df + 0 (by [CD.2])

= 〈a, d〉Df

as required. 2

As we shall see, any Cartesian differential category has tangent structure, with [CD.6′] giving the
naturality of a vertical lift map, and [CD.7′] giving the naturality of a canonical flip.

We recall a number of examples of Cartesian differential categories. The standard example is
of course:

Example 4.3 Smooth functions defined on the Cartesian spaces Rn forms a Cartesian differential
category.

From [Blute et al. 2012], we also have:

Example 4.4 The category of convenient vector spaces and smooth maps between them is a Carte-
sian differential category.

In [Cockett and Seely 2011], the authors prove a surprising result: there is a comonad Faà on
Cartesian left additive categories whose coalgebras are Cartesian differential categories. In partic-
ular, this means that any Cartesian left additive category has an associated Cartesian differential
category:

Example 4.5 If X is a Cartesian left additive category, Faà(X) is a Cartesian differential category.

One can check that for any Cartesian left additive category, defining the differential of f to be
π0f satisfies all axioms with the exception of [CD.2]. For this, we would need (a+ b)f = af + bf
and 0f = 0 for all a, b. Of course, this is true by definition if f is additive. Thus, if all maps in X
are additive (as in the case of the category of commutative monoids or commutative rings), then
D(f) = π0f does define a differential.

Example 4.6 If X is an additive Cartesian category, then D(f) = π0f gives X the structure of a
Cartesian differential category.

4.2 Tangent structure of a Cartesian differential category

We now turn to showing that each Cartesian differential category has a canonical tangent structure
associated to it.
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Proposition 4.7 Any Cartesian differential category has a “differential” Cartesian tangent struc-
ture given by:

TM := M ×M,Tf := 〈Df, π1f〉

with:

• p := π1;

• Tn(M) := M ×M . . .×M (n+ 1 times);

• +〈x1, x2, x3〉 := 〈x1 + x2, x3〉, 0(x1) := 〈0, x1〉;

• `(〈x1, x2〉) := 〈〈x1, 0〉, 〈0, x2〉〉;

• c(〈〈x1, x2〉, 〈x3, x4〉〉) := 〈〈x1, x3〉, 〈x2, x4〉〉.

Proof: That T is a functor follows from [CD.5]:

T (f)T (g) = 〈Df, π1f〉〈Dg, π1g〉 = 〈D(fg), π1fg〉 = T (fg) and T (1) = 〈D(1), π1〉 = 〈π0, π1〉 = 1.

For the additive bundle structure, it is clear that Tn(M) := M ×M . . . ×M (n + 1 times) is
the pullback of n copies of p : TM //M . It is also clear that +p = π0p = π1p and 0p = 1, and the
additive is associative, commutative and unital since addition of maps in a left additive category
is associative, commutative and unital.

We also have
〈x1, x2, x3〉v = 〈x1, 0, x2, x3〉

and it is then clear that v is an equalizer of T (p) and T (p)p0.
As noted in the notes after the definition of tangent structure, asking that each T (f) = 〈Df, π1f〉

is an additive bundle morphism is equivalent to asking that each of p, +, and 0 be natural.
That π1 is natural is immediate:

T (f)π1 = 〈Df, π1f〉π1 = π1f.

+ is natural by [CD.2]:

〈x1, 〈x2, x3〉〉T2(f)(+Y )

= 〈〈x1, x3〉Df, 〈〈x2, x3〉Df, π1π1x3〉〉(+x)

= 〈〈x1, x3〉Df + 〈x2, x3〉Df, π1π1x3〉
= 〈〈x1 + x2, x3〉Df, π1π1x3〉 by [CD.2],

= 〈x1 + x2, π1π1x3〉(Tf)

= 〈x1, 〈x2, x3〉〉(+X)(Tf)

as required. The naturality of 0 : X
〈0,1〉 //X ×X similarly follows by the other part of [CD.2].
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Obviously, T preserves products and the pullbacks defining the Tn’s. That it preserves pairings
follows from [CD.3]:

T (〈f, g〉) = 〈D(〈f, g〉), π1〈f, g〉〉
= 〈〈Df,Dg〉), 〈π1f, π1g〉〉 by [CD.3],

= s〈〈Df, π1f〉, 〈Dg, π1g〉
= s〈Tf, Tg〉

(where s is the map that switches the two interior terms). Similarly, preservation of the projections
follows from [CD.4]. The other diagrams for Cartesian tangent structure are automatic, with the
exception of the preservation of the addition axioms, which follows by the axioms for a Cartesian
left additive category.

The rest of the proof will involve calculations on maps whose domains are either T 2 or T2. To
make these calculations easier to follow, we will show that they are true when composing with an
arbitrary map into T 2 or T2, so that rather than dealing with projections of projections, we are
dealing with maps in the product spaces.

The vertical lift is natural by [CD.6] and [CD.2]:

〈x1, x2〉(`X)(T 2f)

= 〈〈x1, 0〉, 〈0, x2〉〉(T 2f)

= 〈〈x1, 0〉, 〈0, x2〉〉〈〈D2f, 〈π0π1, π1π1〉Df〉, π1〈Df, π1f〉〉
= 〈〈〈x1, x2〉Df, 0〉, 〈0, x2f〉〉 by [CD.6] in the first variable, and [CD.2] in the second and third,

= 〈〈x1, x2〉Df, x2f〉`Y = 〈x1, x2〉〈Df, π1f〉`Y = 〈x1, x2〉T (f)(`Y ).

The canonical flip is natural by [CD.7′]:

〈〈x1, x2〉〈x3, x4〉〉(T 2f)(cY )

= 〈〈x1, x2〉〈x3, x4〉〉〈〈D2f, 〈π0π1, π1π1〉Df〉, π1〈Df, π1f〉〉(cY )

= 〈〈〈〈x1, x3〉〈x2, x4〉〉D2f, 〈x2, x4〉Df〉〉, 〈〈x3, x4〉Df, x4f〉〉(cY ) by [CD.7′]

= 〈〈〈〈x1, x3〉〈x2, x4〉〉D2f, 〈x3, x4〉Df〉, 〈〈x2, x4〉Df〉, x4f〉〉
= 〈〈x1, x3〉, 〈x2, x4〉〉T 2f = 〈〈x1, x2〉, 〈x3, x4〉〉(cX)(T 2f).

To show that these maps are additive bundle morphisms, we need to determine T (+) and T (0).
By [CD.1] and [CD.3], T (+X) = T (〈π0 + π1π0, π1π1〉) is given by

〈〈π0π0 + π0π1π0, π0π1π1〉, 〈π1π0 + π1π0π1, π1π1π1〉〉

while
T (0) = T (〈0, 1〉) = 〈〈D0, D1〉, π1〉 = 〈〈0, 1〉, π1〉

Now, the map 〈π0c, π1c〉 sends

〈〈x1, 〈x2, x3〉〉, 〈x4, 〈x5, x6〉〉〉 7→ 〈〈x1, x4〉, 〈〈x2, x5〉, 〈x3, x6〉〉〉
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We can then show that c preserves addition:

〈〈x1, 〈x2, x3〉〉, 〈x4, 〈x5, x6〉〉〉〈π1x3, π2x3〉(+TX)

= 〈〈x1, x4〉, 〈〈x2, x5〉, 〈x3, x6〉〉〉(+TX)

= 〈〈x1 + x2, x4 + x5〉, 〈x3, x6〉〉
= 〈〈x1 + x2, x3〉, 〈x4 + x5, x6〉〉(cX)

= 〈〈x1, 〈x2, x3〉〉, 〈x4, 〈x5, x6〉〉〉T (+X)(cX).

Preservation of 0 similarly uses the equation T (0) = 〈〈0, 1〉, π1〉, and the calculations to show `
preserves addition are similar.

Finally, the coherence axioms for ` and c are a simple exercise. 2

Note that example 1 of [Rosický 1984] is an instance of this proposition, applied to example 4.6 of
this paper.

4.3 Differential structure in a tangent category

Not only are Cartesian differential categories examples of tangent structure, but one can also
identify precisely which examples of tangent structure give Cartesian differential categories. We
begin by abstracting the structure that occurs on objects in a Cartesian differential category.

Definition 4.8 For an object A in a Cartesian tangent category, differential structure on A
consists of a commutative monoid structure σ : A×A //A, ζ : 1 //A on A together with a map
p̂ : TA //A such that

• A p̂←−− TA p //A is a product diagram;

• The diagrams

1 A
ζ

//

A

1

!
��

A TA
0A // TA

A

p̂

��
and

A×A Aσ
//

T2A

A×A

〈π0p̂,π1p̂〉
��

T2A TA
+A // TA

A

p̂

��

commute;

• + is “linear”, in the sense that

TA A
p̂

//

T (A×A)

TA

T (σ)

��

T (A×A) A×AA×A

A

σ

��

T (A×A) TA× TA
〈T (π0),T (π1)〉 // TA× TA A×Ap̂×p̂ //

commutes.

An object with a specified differential structure is a differential object.
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It may seem odd to not include a linearity axiom for ζ, but the uniqueness of maps to a terminal
object allows one to show such an axiom is automatic:

Lemma 4.9 If (A, p̂A, σA, ζA) is differential structure on A, then

1 M
ζ

//

T (1)

1

!T (1) ��

T (1) TM
T (ζ) // TM

M

p̂��

commutes.

Proof: Consider the calculation:

!T (1)ζ = p1ζ!Aζ (uniqueness of terminal objects)

= p1ζ0Ap̂ (differential structure axiom)

= p101T (ζ)p̂ (naturality of 0)

= T (ζ)p̂ (T (1) is terminal).

2

Note that in the tangent structure of a Cartesian differential category, each object canonically
has the structure of a differential object, with p̂ = π0, σ = π0 + π1, and ζ = 0. Conversely, we
wish to show if we start with an arbitrary Cartesian tangent category, then the full subcategory
category of differential objects is a Cartesian differential category.

The first thing we need to show is that the product of two differential object is a differential
object.

Proposition 4.10 If (A, p̂A, σA, ζA) and (B, p̂B, σB, ζB) are differential objects, then A×B is also,
with:

• p̂A×B := 〈T (π0)p̂A, T (π1)p̂B〉,

• σA×B := 〈〈π0π0, π1π0〉σA, 〈π0π1, π1π1〉σB〉,

• ζA×B := 〈ζA, ζB〉.

Proof: First, note that since T preserves products and the pairs (p̂A, pA), (p̂B, pB) are product
diagrams, then

A×B 〈T (π0)p̂A, T (π2)p̂B〉←−−−−−−−−−−−−− T (A×B)
〈T (π1)pA,T (π2)pB〉 //A×B

is also a product diagram. By naturality,

〈T (π0)pA, T (π1)pB〉 = 〈pA×Bπ0, pA×Bπ1〉 = pA×B,

so the pair (p̂A×B, pA×B) is a product diagram.
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Next, we need to check that the defined addition and zero are compatible with this structure.
For the zero, we need the diagram

1 A×B
〈ζA,ζB〉

//

A×B

1

!

��

A×B T (A×B)
0A×B // T (A×B)

A×B

p̂A×B

��

to commute, for which we have:

0A×B p̂A×B = 0A×B〈T (π0)p̂A, T (π1)p̂B〉
= 〈0A×BT (π0)p̂A, 0A×BT (π1)p̂B〉
= 〈π00Ap̂A, π10B p̂B〉 (T is Cartesian)

= 〈π0!ζA, π1!ζB〉 (p̂A, p̂B compatible with zero)

= !〈ζA, ζB〉

For the addition, we need

A×B ×A×B A×BσA×B

//

T2(A×B)

A×B ×A×B

〈π0p̂A×B ,π1p̂A×B〉
��

T2(A×B) T (A×B)
+A×B // T (A×B)

A×B

p̂A×B

��

to commute, for which we have:

〈π0p̂A×B, π1p̂A×B〉σA×B
= 〈π0〈T (πA)p̂A, T (π2)p̂B〉, π1〈T (π0)p̂A, T (π1)p̂B〉〉〈〈π0π0, π1π0〉σA, 〈π0π1 π1π1〉σB〉
= 〈〈π0T (π0)p̂A, π1T (π0)p̂A〉σA, 〈π0T (πB)p̂B, π1T (π1)p̂B〉σB〉
= 〈〈π0T (π0), π1T (π0)〉+A p̂A, 〈π0(π1), π1T (π2)〉+B p̂B〉 (p̂A, p̂B compatible with addition)

= 〈T2(π0) +A p̂A, T2(π1) +B p̂B〉 = 〈+A×BT (π0)p̂A,+A×BT (π1)p̂B〉 (T is Cartesian)

= +A×B〈T (π0)p̂A, T (π1)p̂B〉 = +A×B p̂A×B.

Checking the linearity of + similarly uses the fact that T is Cartesian. 2

We can now give one of the main results of this section.

Theorem 4.11 Suppose (X,T) is a Cartesian tangent category. Let Diff(X,T) denote the category
whose objects are differential objects, with a map from (A, p̂A, σA, ζA) to (B, p̂B, σB, ζB) simply
consisting of a map f : A //B. Then:

(i) Diff(X,T) is a Cartesian left additive category;

(ii) Diff(X,T) is a Cartesian differential category, with D(f) given by

A×A
〈π0,π1〉 // TA

T (f) // TB
p̂B //B.

38



Proof:

(i) We first need the category to have specified products. We define the product of (A, p̂A, σA, ζA)
and (B, p̂B, σB, ζB) to be as in proposition 4.10. Then, by definition, each object has a
monoidal structure, and this structure is compatible with products by construction. Thus,
by proposition 1.2.2 of [Blute et al. 2008], X has the structure of a Cartesian left additive
category, with

f + g := 〈f, g〉σ and 0 :=!ζ.

(ii) We will begin by establishing [CD.1]. We first show that the linearity axiom for σ implies
that D is linear, in the sense that D(σ) = π0σ. Indeed,

D(σ) = 〈π0, π1〉T (σ)p̂

= 〈π0, π1〉〈T (π0)p̂, T (π1)p̂〉σ (linearity axiom for σ)

= 〈π0, π1〉p̂A×Aσ
= π0σ.

Then

D(f + g) = D(〈f, g〉+) = 〈D(〈f, g〉), π1〈f, g〉〉D(+)

= 〈〈D(f), D(g)〉, π1〈f, g〉〉π0+ = 〈D(f), D(g)〉+ = D(f) +D(g),

as required. Similarly, by lemma 4.9, we have

D(ζ) = 〈π0, π1〉T (ζ)p̂ = 〈π0, π1〉!ζ =!ζ

and so D(0) = 0.

From now on, to reduce the repeated use of isomorphisms, we will assume we are working
with objects such that TA = A×A, p̂A = π0, and pA = π1.

We begin by determining the form of the natural transformations +, 0, `, and c. Since p = π1,
〈x1, x2, x3, x4〉pT = 〈x3, x4〉, and since T is Cartesian, we then have

〈x1, x2, x3, x4〉T (p) = 〈x1, x2, x3, x4〉T (π1) = 〈x1, x2, x3, x4〉π0π1 = 〈x2, x4〉.

By the equations for differential structure, we then get 0A(x) = 〈0, x〉 and +A〈x1, x2, x3〉 =
〈x1 + x2, x3〉. We then get (〈x1, x2〉)0T = 〈0, 0, x1, x2〉 and 〈x1, x2〉T (0) = 〈0, x1, 0, x2〉 since
T is Cartesian.

Then since ` : TM // T 2M is the equalizer of T (p), pT , and T (p)p0 (Proposition 3.10), we
have 〈x1, x4〉` = 〈x1, 0, 0, x4〉.
Now write 〈x1, x2, x3, x4〉c as 〈c1, c2, c3, c4〉. Then the axioms cT (p) = pT and c2 = 1 tell us
that c2 = x3 and c3 = x2. Since lc = l, we have c1(x1, 0, 0, x4) = x1. But then we have

c1(x1, x2, x3, x4) = c1((x1, 0, x3, x4) + (0, x2, x3, x4))

= c1(x1, 0, x3, x4) + c1(0, x2, x3, x4) (since c preserves addition)

= c1(x1, 0, x3, x4) (since c preserves 0)

= c1((x1, 0, 0, x4) + (0, 0, x3, x4))

= c1(x1, 0, 0, x4) + c1(0, 0, x3, x4) (since c preserves addition)

= x1 (by above and since c preserves 0).
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Thus we have 〈x1, x2, x3, x4〉c = 〈x1, x3, x2, x4〉.
We now turn to showing that D(f) = T (f)π0 satisfies the required axioms for a Cartesian
differential category.

By naturality of p, we can determine that:

T (f) = 〈T (f)π0, T (f)π1〉 = 〈Df, π1f〉

Similarly,
T2(f) = 〈〈π0, π1π0〉D(f), 〈π1D(f), π1π1f〉

and

D2(f) = T (D(f))π0 = T (T (f)π0)π0 = T 2(f)T (π0)π0 = T 2(f)〈π0π0, π1π0〉π0 = T 2(f)π0π0.

We begin with [CD.5]:

D(fg) = T (fg)π0

= T (f)T (g)π0

= 〈T (f)π0, T (f)π1〉D(g)

= 〈Df, π1f〉D(g) by naturality of p = π1.

Since the functor T is Cartesian, with isomorphism s : T (M ×N) // TM × TN given by

s(m1, n1,m2, n2) = (m1,m2, n1, n2),

we have T (〈f, g〉) = 〈Tf, Tg〉s, T (π0) = sπ0 = 〈π0π0, π1π0〉, and T (π1) = 〈π1π0, π1π1〉. Then
we get [CD.4]:

D(〈f, g〉) = T (〈f, g〉)π0

= 〈Tf, Tg〉sπ0

= 〈Tf, Tg〉〈π0π0, π1π0〉
= 〈T (f)π0, T (g)π0〉
= 〈Df,Dg〉

and for [CD.3]:
D(π0) = T (π0)π0 = 〈π0π0, π1π0〉π0 = π0π0,

D(π1) = T (π1)π0 = 〈π0π1, π1π1〉π0 = π0π1,

D(1) = T (1)π0 = π0

For [CD.2], we have

〈x1, x3〉D(f) + 〈x2, x3〉D(f) = 〈〈x1, x3〉D(f) + 〈x2, x3〉D(f), x3f〉π0

= 〈〈x1, x3〉D(f), 〈x2, x3〉D(f), x3f〉(+)π0

= 〈x1, x2, x3〉T2(f)(+)π0

= 〈x1, x2, x3〉(+)T (f)π0

= 〈x1 + x2, x3〉D(f)
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and the 0 axiom is similar. For [CD.6′] we use naturality of ` in the following calculation:

〈x1, 0, 0, x2〉D2(f) = 〈x,0, 0x2〉T (T (f)π0)π0

= 〈x1, x2〉`T 2(f)T (π0)π0

= 〈x1, x2〉T (f)`T (π0)π0

= 〈x1, x2〉T (f)π0 = 〈x1, x2〉D(f).

For [CD.7′], using the naturality of c, we have:

〈〈x1, x2〉〈x3, x4〉〉D2f = 〈〈x1, x2〉〈x3, x4〉〉T (T (f)π0)π0

= 〈〈x1, x2〉〈x3, x4〉〉T (T (f))cT (π0)π0

= 〈〈x1, x2〉〈x3, x4〉〉cT (T (f))T (π0)π0

= 〈〈x1, x3〉〈x2, x4〉〉T (T (f))T (π0)π0

= 〈〈x1, x3〉〈x2, x4〉〉D2(f)).

2

It may seem slightly odd to consider all maps between differential objects, but restricting to the
maps which preserve addition and/or those which preserve p̂ would be altogether too strong. In
the first case, we would only be looking at maps which preserve addition; in the second, we would
only be considering maps which are linear (in the differential sense of [Blute et al. 2008]).

Combining the results of the previous two sections, one can express the relationship between
tangent structure and Cartesian differential categories by an adjoint. Let cartTanStrong denote
the category of Cartesian tangent categories (definition 2.8) and strong morphisms (definition 2.7).
It is straightforward to check that any strong morphism lifts differential structure; hence the above
result gives a functor Diff : cartTanStrong // cartDiff . Similarly, if we let cartDiff denote the
category whose objects are cartesian differential categories, and whose maps are functors which
preserve products, the additive structure, and the differential (exactly), then proposition 4.7 gives
us a functor Tan : cartDiff // cartTanStrong. We then have:

Theorem 4.12 Tan a Diff; that is, if we have (X, D) ∈ cartDiff and (X′, T ) ∈ cartTanStrong,
then there is a natural isomorphism

Tan(X, D) // (X′, T )

(X, D) // Diff(X′, T ).

Proof: The unit of the adjunction

F : (X, D) // Diff(Tan(X, D))

was already described after the definition of differential structure: F sends the object X to its
canonical differential structure (X,π0,+, 0) (and does nothing to the maps). This functor preserves
the differential exactly since the differential in Diff(Tan(X, D)) is given by 〈D(f), π1f〉π0 = D(f).

For the co-unit of the adjunction

G : Tan(Diff(X′, T )) // (X′, T ),
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we simply send (A, π0, ζ, σ) to A (and again do nothing to maps). Denoting the tangent functor in
Tan(Diff(X′, T )) by TD, we then need a natural isomorphism α : G(TD(A)) // T (GA); that is, a
natural isomorphism A×A // TA. By the definition of a differential structure, TA is a product,
with projections 〈p̂A, pA〉, so we take α = 〈π0, π1〉. For naturality of α, for a map f : A // B, we
need

B ×B TB
〈π0,π1〉

//

A×A

B ×B
TD(f)

��

A×A TA
〈π0,π1〉 // TA

TB

T (f)
��

to commute. Since the target TB is a product, it suffices to show the maps are equal when
post-composing by its projections:

TD(f)〈π0, π1〉〈p̂, p〉
= 〈Df, π1f〉〈p̂, p〉
= 〈〈π0, π1〉T (f)p̂, π1f〉〈p̂, p〉 (by definition of D)

= 〈〈π0, π1〉T (f)p̂, 〈π0, π1〉pf〉
= 〈〈π0, π1〉T (f)p̂, 〈π0, π1〉T (f)p〉 (by naturality)

Checking that α preserves the other elements of the tangent structure is similar. The triangle
equalities are straightforward. 2

In the next section, we give an alternate description of differential objects, showing that they
always arise as tangent spaces.

4.4 Tangent spaces and differential structure

In most standard descriptions of the tangent bundle of a smooth manifold, tangent spaces are
described before the tangent bundle itself. In these descriptions, one begins by describing the
tangent space of tangent vectors at each point of the space, and then glues these tangent spaces
together to form the tangent bundle. In this development, however, we have begun with the tangent
bundle, and will recover the tangent spaces from it. The purpose of this section is to prove that
each tangent space is canonically a differential object, and, in fact, all differential objects arise as
tangent spaces.

Definition 4.13 If X is a Cartesian tangent category, and M is an object with a point a : 1 //M ,
then, if the pullback of a along p exists

1 Ma
//

TaM

1
! ��

TaM TM
ia // TM

M

p
��

and is preserved by Tn, then we will call this pullback, Ta(M), the tangent space of M at a.

Notice that we require not just that the pullback exists but also that it is preserved by the
tangent functor. Because T (M) is a commutative monoid in the slice category over M , it now
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immediately follows that each tangent space TaM is a commutative monoid in X itself, with unit
a0|ia = 01T (a)|ia =!T (a)|ia : 1 // TaM (recall 01 is an isomorphism) and addition (ia × ia) + |ia :
Ta(M)× Ta(M) // Ta(M).

The following is a useful preliminary to our main result.

Lemma 4.14 If the tangent space Ta(M) exists then

T (Ta(M))
T (ia) // T 2(M)

T (p) //

pT p0
// T (M)

commutes, giving a unique map {T (ia)} : T (Ta(M)) // T (M).

Proof: First, observe that for any point a : 1 //M , by naturality of 0, 01T (a) = a0M , so that
since T is Cartesian, !T (a) =!a0M . Then we have:

T (ia)pT p0 = T (iap)p0 (naturality of p)

= T (!a)p0 (pullback diagram)

= !T (a)p0 (T is Cartesian)

= !a0p0 = !a0 (as above and as 0p is the identity)

= !T (a) = T (!a) (T is Cartesian)

= T (iap) (pullback diagram)

= T (ia)T (p).

2

We can now demonstrate that tangent spaces satisfy a form of the Kock-Lawvere axiom and
thus have differential structure. As noted earlier, the proof of the result uses the universality of the
vertical lift in a fundamental way.

Theorem 4.15 In a Cartesian tangent category every tangent space, Ta(M), is a differential ob-
ject.

Proof: First observe that Ta(M)× Ta(M) is isomorphic to T (Ta(M)) as by assumption:

T (Ta(M))

!

��

T (!)

��

T (ia) // T 2(M)

T (p)

��
T (1)

T (a) // T (M)

1

0

uuuuuuuuuu

uuuuuuuuuu a0

66
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is a pullback. However we then have an isomorphism γa:

T (Ta(M))
T (i)

++

γa

((

!

��

Ta(M)× Ta(M)
〈π0ia,π1ia〉//

π0
��

T2(M)

π0
��

v // T 2(M)

T (p)

��

Ta(M)

!

��

ia // T (M)

p

��
1 a

//M
0
// T (M)

because the large square is a pullback as all of its inner regions are pullbacks: the lower left by
definition of being a tangent space, the upper left because it is a projection, and the right by lemma
2.12(ii). This in turn provides a unique map {T (i)}|ia = γaπ0:

T (Ta(M))
{T (ia)}

((
{T (ia)}|ia

&&

!

""

Ta(M)
ia //

!
��

T (M)

p

��
1 a

//M

Next observe γaπ1 = pTa(M). Since these are maps into the tangent space Ta(M), it suffices to
check they are equal when post-composed by ia:

pTa(M)ia = T (ia)pM (naturality)

= γa〈π0ia, π1ia〉vpM
= γa〈π0ia, π1ia〉π1 (lemma 2.11)

= γaπ1ia.

So, our choice of p̂ is {T (ia)}|ia . Now, we need to show that the zero and addition on Ta(M) are
compatible with the addition and zero of the tangent structure. For the zero, we need the following
diagram to commute:

1 TaM0a
//

Ta(M)

1
! ��

Ta(M) T (TaM)
0 // T (TaM)

TaM

{T (ia)}ia��
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It suffices to check they are equal when post-composed by ia, so we need 0{T (ia)} =!a0. Thus, it
suffices to show !a0 has the same universal property of lemma 2.12(i) as {0T (ia)}. Thus, consider:

〈!a0`, 0T (ia)pT 0T 〉T (+)

= 〈iap0`, 0pia0T 〉T (+) (pullback diagram and naturality of p)

= 〈iap0T (0), ia0T 〉T (+) (` is an additive bundle morphism and 0p = 1)

= 〈ia0TT (p)T (0), ia0T 〉T (+) (naturality of 0)

= ia0T 〈T (p)T (0), 1〉T (+)

= ia0T (adding a zero term)

= 0T (ia) (naturality of 0)

For addition, we need the following diagram to commute:

Ta(M)× Ta(M) Ta(M)
〈π0ia,π1ia〉+|ia

//

T2(Ta(M))

Ta(M)× Ta(M)

〈π0{T (ia)}|ia ,π1{T (ia)}|ia 〉
��

T2(Ta(M)) T (Ta(M))
+ // T (Ta(M))

Ta(M)

{T (ia)}ia
��

Again, it suffices to check the results are equal when post-composed by ia, so we need

+{T (ia)} = 〈π0{T (ia)}, π1{T (ia)}〉+

Thus, we need 〈π0{T (ia)}, π1{T (ia)}〉+ to satisfy the same universal property as {+T (ia)}. For
this we have:

+T (ia) = T2(ia) +T (naturality)

= 〈π0T (ia), π1T (ia)〉+T

= 〈〈π0{T (ia)}`, π0T (ia)pT 0T 〉T (+), 〈π1{T (ia)}`, π1T (ia)pT 0T 〉T (+)〉+T (defn of {−})
= 〈〈π0{T (ia)}`, π1{T (ia)}`〉+T , 〈π0T (ia)pT 0T , π1T (ia)pT 0T 〉+T 〉T (+) (by lem 2.6 (i))

= 〈〈π0{T (ia)}`c, π1{T (ia)}`〉T (+), π0T (ia)pT 0T 〉T (+) (lem 2.6 (ii), and adding zero)

= 〈〈π0{T (ia)}`, π1{T (ia)}`〉T (+), π0pia0T 〉T (+)

= 〈〈π0{T (ia)}, π1{T (ia)}〉+ `,+pia0T 〉T (+)

= 〈〈π0{T (ia)}, π1{T (ia)}〉+ `,+T (ia)pT 0T 〉T (+)

Finally, we need to show that our addition is linear, so we need

T (Ta(M)) Ta(M)
{T (ia)}|ia

//

T (Ta(M)× Ta(M))

T (Ta(M))

T ((ia×ia)+|ia )
��

T (Ta(M)× Ta(M)) Ta(M)× Ta(M)
〈T (π0){T (ia)}|ia ,T (π1){T (i|a)}|ia 〉// Ta(M)× Ta(M)

Ta(M)

(ia×ia)+|ia
��

to commute. It suffices to check the two maps are equal when post-composed by i, so we need

〈T (π0){T (ia)}|ia〉, T (π1){T (ia)}|ia〉(ia × ia)+ = T ((ia × ia) + |ia){T (ia)}
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which follows as:

〈T (π0){T (ia)}|ia , T (π1){T (ia)}|ia〉(ia × ia)+
= 〈T (π0){T (ia)}, T (π1){T (ia)}〉+

= 〈{T (π0)T (ia)}, {T (π1)T (ia)}〉+

= 〈{T (π0ia)}, {T (π1ia)}〉+

= {〈T (π0ia), T (π1ia)〉T (+)} by lemma 2.14 (iv)

= {T (〈π0ia, π1ia〉+)} since T is Cartesian

= {T ((ia × ia)+)}
= {T ((ia × ia) + |iaia)}
= {T ((ia × ia) + |ia)T (ia)}
= T ((ia × ia) + |ia){T (ia)}.

2

Corollary 4.16 If (X,T) is a Cartesian tangent category, then the category of tangent spaces, with
their associated differential structures, is a Cartesian differential category equivalent to Diff(X,T).

Proof: We have just seen that every tangent space has a differential structure. But, in fact every
object with differential structure (A, p̂, σ, ζ) is the tangent space to itself at ζ, as

1 A
ζ

//

A

1

! ��

A TA
〈1,!ζ〉 // TA

A

p
��

is a pullback diagram. So the category of tangent spaces with their differential structure is the
category of all differential structures, and hence by Theorem 4.11 forms a Cartesian differential
category. 2

Finally, we make some remarks about linear maps between tangent spaces. By the universal
property of tangent spaces, any smooth map f : M //N induces a map between tangent spaces

Ta(M)
Ta(f):=iaT (f)|ifa // Taf (N).

In the category of finite-dimensional smooth manifolds, these maps are linear (in the vector space
sense). While Cartesian differential categories assumes no vector space structure, there is still a
notion of linear map between two objects: one says a map f : X // Y in a Cartesian differential
category is linear if D(f) = π0f . In the standard example of smooth maps between Cartesian
spaces, this notion agrees with the usual one. Here, we show that the maps Ta(f) are linear in this
differential sense.

Proposition 4.17 Suppose (X,T) is a Cartesian tangent category, with a map f : M // N and
a point a : 1 //M whose tangent space Ta(M) exists. Then the map Ta(f) : Ta(M) // Taf (N) is
linear in the differential sense; ie.,

D(Ta(f)) = p̂Ta(f).
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Proof: Recalling that D(Ta(f)) := T (Ta(f))p̂, we need to show the following diagram commutes:

Ta(M) Taf (N)
iaT (f)|iaf

//

T (Ta(M))

Ta(M)

{T (ia)}|ia
��

T (Ta(M)) T (Taf (N))
T (iaT (f)|iaf )

// T (Taf (N))

Taf (N)

{T (iaf )}|iaf
��

It suffices to show they are equal when post-composed by iaf , so we need to show

T (iaT (f)|iaf ){T (iaf )} = {T (ia)}T (f).

But

T (i1T (f)|iaf ){T (iaf )} = {T (iaT (f)|iaf )T (iaf )}
= {T (iaT (f))}
= {T (ia)T

2(f))}
= {T (ia)}T (f) (by lemma 2.14)

as required. 2

This shows that the differential definition of linear map is an appropriate replacement for the
vector space definition in this abstract context.

5 Representable tangent structure and infinitesimal objects

The previous section demonstrated a fundamental link between differentials and tangent structure.
We now turn our attention to another important relationship. Tangent structure in which the
tangent functor is of the form ( )D for some object D – which we shall characterize as being an
infinitesimal object – is said to be representable. We shall show that such tangent structure places
one in the domain of synthetic differential geometry.

We begin this section by recalling – and generalizing to our additive context – the basic ideas
of synthetic differential geometry. In particular, we recall how a model of synthetic differential
geometry (which here we take to be an infinitesimally linear rig of line type in a Cartesian closed
category with finite limits) produces a setting with representable tangent structure. For the reverse
direction we show how representable tangent structure corresponds to having an infinitesimal object,
and how having an infinitesimal object produces a system of infinitesimals. We then extend the
ideas of [Rosický 1984] and show how (given sufficient limits and exponent objects) the central
notion of synthetic differential geometry, the rig of line type, can be recovered from the presence
of an infinitesimal object. As synthetic models are more sophisticated than their standard cousins
from differential geometry, we end the section by discussing a basic (additive) synthetic model.
The model is based on finitely presented commutative rigs and exposes one further key structural
aspect of tangent structure: whenever tangent structure is representable, the opposite category has
(dual) tangent structure.
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5.1 Basic synthetic differential geometry

Synthetic differential geometry was introduced by Lawvere as a way to give formal mathematical
content to the “synthetic” reasoning employed by Sophus Lie. Lie would often reason about dif-
ferential geometry by using “infinitesimally small” vectors: he called this “synthetic” reasoning.
However, Lie was unable to provide a rigorous framework for these infinitesimals, and as a result,
fell back on analytical techniques which he found less intuitive. Lawvere showed how one could
make Lie’s synthetic reasoning precise by providing topos models in which synthetic arguments
using infinitesimals could be interpreted.

The purpose of this section is to introduce these ideas in the additive context. The starting
point for Lawvere’s ideas, as described in [Kock 2006], is a “ring of line type” usually situated in
a topos. We shall generalize these ideas in stages: in this section we will take the first step by
showing how these ideas can be translated into the additive and Cartesian closed context. This
means, in particular, that we shall use rig of line type rather than ring of line type:

Definition 5.1 If X is a finitely-complete Cartesian-closed category, a rig of line type consists
of an internal commutative rig R such that the canonical map from

α : R×R //RD; (a, b) 7→ λd.a+ b · d

where D := {d ∈ R : d2 = 0}, is an isomorphism.

The requirement that α is an isomorphism is the Kock-Lawvere axiom. It says that every map
from D (the “object of infinitesimals”) to R (the “real line”) is linear: that is all infinitesimal curves
are straight. It should be noted that often additional assumptions are made about the relationship
of R to other infinitesimal objects (such as Dn = {d ∈ R : dn+1 = 0}), which allows one to consider
other jet bundles for manifolds. Since our concern is only with the tangent bundle itself, we will
not consider these additional assumptions here.

It is important to appreciate that a category with a rig of line type is necessarily rather special.
In particular, there are no non-zero rigs of line type in the category of sets (see exercise 1.1 in
[Kock 2006]). In fact, it takes some quite sophisticated mathematical work to show that such
categories even exist! For example, the book [Moerdijk and Reyes 1991] is almost entirely devoted
to building such categories. Nonetheless, there are models of SDG in which the classical category of
smooth manifolds fully and faithfully embeds. This shows that one can indeed reason synthetically
about classical differential geometry and the results will be classically valid. Thus, reasoning in
SDG is analogous to reasoning in real analysis by passing to the richer setting of complex analysis.

In a model of SDG, because one thinks of a curve f : D //M as an “infinitesimal curve” on
M , one wishes to think of the object MD as the tangent bundle of M . However, in a model of SDG
simply setting TM := MD does not directly give tangent structure. This is because, while the map
0 : 1 //D gives the projection p : MD //M , the second tangent bundle T 2M = (MD)D = MD×D

and the pullback bundle T2M may not behave in the correct manner. Thus, we need some additional
requirements on M to secure the correct behavior. These, following [Kock 2006], are given by the
following definitions:

Definition 5.2 In a finitely-complete Cartesian-closed category with a rig of line type, an object
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M is vertically linear6 if it perceives the diagram:

D
〈0, 1〉
−−−−−→−−−−−→
〈0, 0〉

D ×D
〈·,π1〉 //D(2)

as a coequalizer, where D(n) := {(d1, d2 · · · dn) ∈ Dn : ∀i, j ≤ n, di · dj = 0}.

To say an object, M , perceives a diagram as being a colimit is to say that using the diagram
as an exponent of M turns the diagram into a limit cone. The objects which perceive a certain
collection of cones as being limits are always closed under both limits and exponentiation. The
definition means that the universality of the vertical lift holds for vertically linear objects.

Definition 5.3 Say that an object M is infinitesimally linear if M perceives

1
0 //

0
��

D

〈0,1〉
��

D
〈1,0〉
// D(2)

as a pushout and, similarly, perceives the analogous diagram for each D(n) as a pushout power.

This tells us that on an infinitesimally linear object M , the tangent bundle functor Tn(M) is
MD(n), and allows us to define the addition map + : T2

// T .

Proposition 5.4 (Kock’s construction for rigs of line type) If X is a finitely-complete Carte-
sian closed category with a rig of line type, R, which is infinitesimally linear, then Xiv, the full sub-
category of objects which are infinitesimally and vertically linear, includes R, is a finitely complete
Cartesian closed subcategory, and has Cartesian tangent structure, with the tangent functor given
by ( )D.

Proof: The objects which perceive certain cocones as being colimits are always closed to finite
limits and exponentiation with any object. Thus the subcategory Xiv is certainly a finitely complete
Cartesian closed subcategory. Furthermore, as noted above, infinitesimal linearity allows us to
represent Tn(M) as MD(n). The various natural transformations are then given by applying the
functor M (−) to particular maps between these infinitesimal objects:

• addition is induced by the diagonal map ∆ : D //D(2), while the 0 map is induced by the
unique map D // 1;

• the multiplication map (x1, x2) 7→ (x1 · x2) gives the vertical lift ` : TM // T 2M ;

• the canonical flip c : T 2M // T 2M is induced by the “twist” map t : D2 //D2.

6This is a strong version of property W in [Kock 2006]: there it is so named as it was due to Gavin Wraith.
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The coherence axioms are then straightforward to check. For example, the assumption that (D, ·)
is commutative gives `c = `, while c is an additive bundle morphism follows since the diagram

D ×D D ×D(2)
1×∆

//

D ×D

D ×D

t

��

D ×D D(2)×D∆×1 // D(2)×D

D ×D(2)

t

��

commutes. Finally, the fact that every object is vertically linear provides precisely that v :
T2M //T 2M (represented by the map (d1, d2) 7→ (d1 · d2, d2)) has the required equalizer property.

Finally, we need to check that R is vertically linear. By the Kock-Lawvere axiom and the
infinitesimal linearity of R, the diagram

RD(2) //RD×D
R〈0,1〉−−−−−→−−−−−→
R〈0,0〉

RD

becomes

R×R×R
〈π0,π1,0,π2〉 //R×R×R×R

〈π0, π2〉−−−−−−−→−−−−−−−→
〈π0, 0〉

R×R,

which is an equalizer, as required. 2

The Kock-Lawvere axiom also tells us that R is the tangent space of D at 0; in other words,
the following diagram is a pullback:

1 D
0

//

R

1

! ��

R DD// DD

D

p
��

Hence, by Theorem 4.15, we have the following:

Corollary 5.5 In the tangent structure associated to a model of SDG, R and all of its finite powers
have differential structure.

A typical synthetic model constructed in this manner may contain many more differential objects
than simply the powers of R. For example, it was shown in [Kock 1986] and [Kock and Reyes 1986]
that the convenient vector spaces fully and faithfully embed into the Cahiers topos, one of the first
models of SDG. Moreover, one can show that this embedding is a strong morphism of tangent
structure. Since the category of convenient vector spaces forms a Cartesian differential category
([Blute et al. 2012]), this shows that each convenient vector space (as an object of the Cahiers
topos) also has differential structure. It would be interesting to know whether there are other
differential objects in the Cahiers topos besides the convenient vector spaces.
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5.2 Representable tangent structure and synthetic models

By the result of the previous section, each additive model of synthetic differential geometry provides
an example of tangent structure. The tangent structure, however, has the key property that the
functors T and Tn are representable. Our objective now is to show that demanding tangent structure
be representable is sufficient to place one in a setting which is morally synthetic. The general ideas
follow the last section of [Rosický 1984]; however, we go into greater detail. In particular, we
show how one can extract a commutative rig of line type from an example of representable tangent
structure; the ring constructed in [Rosický 1984] is not necessarily commutative.

The starting point for the development is to characterize the representing objects for the func-
tors used in tangent structure. We view the object representing the tangent functor to be an
“infinitesimal” object. The main observations connecting this to synthetic geometry come in the
next subsection, where we will show that from such infinitesimal object, one can (given certain
limits) construct various rig objects which satisfy the Kock-Lawvere axiom, and this places one
squarely in the synthetic territory.

Recall that a functor on a Cartesian category is representable if it is equivalent to an ex-
ponential functor, ( )A = A ⇒ . The object A is then the representing object. Notice that the
object A must be an exponent object in the sense that for each object X the exponential object
XA = A ⇒ X must exist. Composition of representable functors is, up to equivalence, given by
taking the product of the representing objects and natural transformation between such functors
are completely determined by ordinary maps, in a contravariant direction, between the representing
objects. In this way functorial (macroscopic) structure on representable functors is mirrored by
(microscopic) structure on the representing objects.

A category has representable tangent structure in case it is Cartesian and has tangent
structure in which all the functors Tn and Tn are representable. Notice that this necessarily
means that the tangent structure is Cartesian. Note that we only require certain objects to be
exponentiable; thus, we do not need to demand that the category be Cartesian closed.

Our first objective is to translate the macroscopic functorial behavior of tangent structure into
the microscopic behavior on the representing objects:

Definition 5.6 A Cartesian category X has an infinitesimal object D in case:

[Infsml.1] D is a commutative semigroup with multiplication � : D × D // D and a zero
℘ : 1 //D such that the following diagrams commute:

D ×D

� ##GGGGGGGGG
c× // D ×D

�{{wwwwwwwww

D

D ×D ×D
�×1

��

1×� // D ×D
�
��

D ×D �
// D

D
〈℘,1〉//

℘
##GGGGGGGGG D ×D
�
��

D
〈1,℘〉oo

℘
{{wwwwwwwww

D

[Infsml.2] Pushout powers of 1
℘ //D exist:

1
℘ //

℘

��

D

ı0
��

D ı1
// D ?D
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[Infsml.3] There is a map δ : D //D ?D which makes the object ℘, in the pointed category 1/X,
a commutative comonoid with respect to the coproduct, ? (the unit is necessarily
the unique map to the final object). Explicitly this means that the following diagrams
commute:

D

δ
��

δ // D ?D

1?δ
��

D ?D
δ?1
// D ?D ? D

D
δ

{{wwwwwwww
δ

##GGGGGGGG

D ?D c?
// D ?D

D

δ
��wwwwwwwww

wwwwwwwww

GGGGGGGGG

GGGGGGGGG

D D ?D
!?1

oo
1?!

// D

[Infsml.4] The following diagram commutes

D ×D

1×δ
��

� // D

δ
��

D × (D ?D)
〈�ı0|�ı1〉

// D ?D

[Infsml.5] The following is a coequalizer:

D
〈℘, ℘〉
−−−−−→−−−−−→
〈℘, 1〉

D ×D
(δ×1)〈�|?π0〉 //D ?D

[Infsml.6] The objects Dn and Dn are exponent objects.

We shall, as usual, write D0 := 1, D1 := D, D2 = D×D, etc. and write, suggestively, D(0) := 1,
D(1) := D, D(2) := D ?D, D(3) := D ?D ? D, etc. We observe:

Proposition 5.7 A Cartesian category has representable tangent structure if and only if it has an
infinitesimal object in the above sense.

Proof: This is a matter of translating between the macroscopic functorial structure and the
microscopic structure. First, consider the map 0 : A //TA = AD. This must be induced by a map
D // 1; however, there is only one such map ! : D // 1. Now consider c : T 2A = AD×D //AD×D.
This corresponds to a map c× : D×D //D×D: we also know T (0)cp = 0 and 0c = T (c), on the
microscopic level this implies c×π1 = π0 and c×π0 = π1. Thus, c× is the symmetry of the product.

The transformation p : TA = AD //A must correspond to a point in D. This is ℘ : 1 //D. The
canonical lift must correspond to a map � : A×A //A: as `c = `, this is a commutative operation
and the first coherence diagram for ` asserts that it is associative. The bundle homomorphism for
` forces ℘ to be a zero for this multiplication.

Clearly T2(A) = AD?D as a pushout in the exponent becomes a pullback. Then the bundle
addition is given by δ; the additive properties of the bundle addition give a commutative comonoid
structure to the copowers of ℘ in the coslice 1/X.

It is clear that the symmetry map will induce the desired morphism of bundles. However, the
behavior of the lift is less clear. A little scrutiny reveals that [Infsml.4] is the required diagram,
and it is asserting the “distributivity” of multiplication over addition.
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Finally [Infsml.5] is the translation of the universality of the vertical lift. 2

Here is a synopsis of the correspondence between the two levels:

Microscopic level Macroscopic level
(Infinitesimal object operations) (Functorial properties)

! : D // 1 final map 0 : A // T (A) bundle zero
c× : D ×D //D ×D symmetry of product c : T 2A // T 2A canonical flip
℘ : 1 //D zero of infinitesimal object p : TA //A projection of tangent bundle
� : D ×D //D multiplication of infinitesimals ` : TA // T 2A vertical lift
δ : D //D ?D comultiplication of infinitesimals + : T2A // TA bundle addition.

An infinitesimal object in this sense has the property that every element under the multiplication
has square zero:

Lemma 5.8 If D is an infinitesimal object, then the following diagram commutes:

D ×D D�
//

D

D ×D
∆ ��

D

D

℘

''OOOOOOOOO

Proof: First, we claim that if we define

D ?D
χ:=〈1,℘〉?〈℘,1〉 //D ×D,

then ∆ = δχ. Indeed, by [Infsml.3],

δχπ0 = δ(1 ? ℘) = 1

and similarly δχπ1 = 1, so that ∆ = 〈1, 1〉 = δχ.
So ∆� = δχ�. But

ı0χ� = 〈1, ℘〉� = ℘

by [Infsml.1]; similarly ı1χ� = ℘, so that χ� = ℘. Thus

∆� = δχ� = δ℘ = ℘,

as required. 2

An alternate axiomatization of what it means for an object to be infinitesimal is discussed
in [Lawvere 2011]: the paper also serves to promote the idea that infinitesimal objects should be
regarded as being primary in developing synthetic models. Toward this end, below, we reformulate
the notion of a synthetic model so that it no longer relies on the presence of a rig of line type.

By a tiny object in a Cartesian category we shall mean a 2-nilpotent commutative semigroup.
This means, explicitly, a tiny object A = (A,m, 0), where m : A × A // A is the multiplication
and 0 : 1 //M is the zero, must satisfy:

A×A×A
1×m

��

m×1 // A×A
m
��

A×A m
// A

A×A

m
##FFFFFFFFF
c× // A×A

m
{{xxxxxxxxx

A

A

0 ##FFFFFFFFF
〈0,1〉// A×A

m
��

A
〈1,0〉oo

0{{xxxxxxxxx

A

A

0 ##FFFFFFFFF
∆ // A×A

m
��
A
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Notice that each D(n), of the previous section, is a tiny object with the multiplication defined
pointwise.

Clearly for any Cartesian category, X, we may form a category of tiny objects, Tiny(X). This
category has a zero: that is an object which is both initial and final which induces unique zero
maps between any two objects. We shall call a zero preserving functor from the opposite of the
Lawvere theory of commutative monoids, Tcm, into the category of tiny objects of a category,
D : Top

cm
//Tiny(X) a system of infinitesimals provided the tiny multiplication on D(2) satisfies:

D(1)×D(1)

D(ı0)×D(ı1)

��

0 // D(2)

D(2)×D(2)

mD(2)

66lllllllllllllll

We do not demand that the functor preserves products/coproducts.
Because Tcm has biproducts there is, for each system of infinitesimals, a unique comonoidal

transformation χ : D(n+m) //D(n)×D(m) such that

D(ni)
δij //D(nj) = D(ni)

D(ıi) //D(n0 + n1)
χ //D(n0)×D(n1)

πj //D(nj)

where δij is Kronecker’s delta; that is, when i = j the map is the identity, otherwise it is zero.
Clearly, the objects D(n) (with D(1) = D and D(0) = 1) of the previous section provide a

system of infinitesimals with comultiplication given by the diagonal map, δ : D //D(2); d 7→ (d, d),
and the counit given by the final map ! : D // 1. On the other hand, when a category has an
infinitesimal object, the objects D(0) = 1, D(1) = D,D(2) = D ?D,D(3) = D ?D ?D, ... also form a
system of infinitesimals. In particular, each D(n) is a tiny object: the multiplication for D(2) is:

(D ?D)× (D ?D)
�A?A //D ?D

= (D ?D)× (D ?D)
θ(θ′?θ′) // (D ×D) ? (D ×D) ? (D ×D) ? (D ×D)

�?!?!?� //D ?D

where we use strength to express the distribution of the product inside the ? . Notice that the
“cross” term multiplications are zero so that the requirement on the tiny multiplication is met.

A useful observation which we will have occasion to use shortly concerns a slight re-expression
of [Infsml.4]:

Lemma 5.9 In a category with an infinitesimal object, (δ × δ)�A?A = (1 × δ)〈�ı0| � ı1〉 so that
[Infsml.4] holds if and only if

D ×D

δ×δ
��

� // D

δ
��

(D ?D)× (D ?D) �D?D

// D ?D

so that δ is a homomorphism of tiny objects.
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Proof: First note that [Infsml.4] also implies δ preserves the tiny zero; simply precompose the
diagram for [Infsml.4] with the map 〈℘, ℘〉 : 1 //D ×D.

In any category there is always a natural map (X × A) ? (X × A) //X × (A ? A); when X is
an exponent object this is a natural isomorphism. The inverse of this transformation provides a
strength θ : X × (A ? A) // (X ×A) ? (X ×A) (and its symmetric dual θ′ : (A ? A)×X // (A×
X) ? (A×X)) which we shall use explicitly in the calculation below.

(δ × δ)�A?A = (1× δ)(δ × 1)�A?A
= (1× δ)(δ × 1)θ(θ′ ? θ′)(� ? ! ? ! ? �)

= (1× δ)θ((δ × 1) ? (δ × 1))(θ′ ? θ′)((� ? !) ? (! ?�))

= (1× δ)θ((δ × 1) ? (δ × 1))(((1 ? !)× 1) ? ((! ? 1)× 1))(� ?�)

= (1× δ)θ(� ?�)

= (1× δ)〈�ı0| � ı1〉.

2

A synthetic model is a system of infinitesimals in a finitely complete Cartesian closed category
in which every object D(n) is both infinitesimally linear and infinitesimally vertical. To say that
D(i) is infinitesimally linear is to say that D(i) perceives pointed copower diagrams of the form:

D(0)

℘

��

℘ // D(1)

ı0
��

D(1) ı1
// D(2)

to be pushout diagrams. To say that D(i) is vertically linear is to say that it perceives

D(1)
〈℘, ℘〉
−−−−−→−−−−−→
〈℘, 1〉

D(1)×D(1)
(δ×1)〈�|?π0〉 //D(2)

to be a coequalizer. The map 〈�|?π0〉 can be formed, of course, because D(2) is infinitesimally
linear.

The system of infinitesimals in an additive model of synthetic geometry, given by the objects
D(n), satisfies these properties if and only if R is infinitesimally linear (as D(n) ⊆ Rn and R
is then vertically linear from the Kock-Lawvere axiom). Thus, in the formulation of synthetic
geometry using rigs of line type, the testing for linearity is conveniently transferred onto the rig
itself. In a category with an infinitesimal object, of course, such a transference may not be possible,
however, these requirements are immediately satisfied! We now obtain a generalization of Kock’s
construction which avoids talking about a rig of line type altogether:

Proposition 5.10 (Kock’s construction for infinitesimals) In any synthetic model, the in-
finitesimally and vertically linear objects form a complete Cartesian closed subcategory which has
representable tangent structure.
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Proof: It suffices to show that there is an infinitesimal object; the obvious candidate is D(1). This
certainly satisfies [Infsml.1]. The requirement of infinitesimal linearity ensures the D(n) is the
pushout power required by [Infsml.1]. The fact that one is picking out a commutative comonoid
in the tiny objects (which are forced to be copowers) guarantees [Infsml.3]. Lemma 5.9, together
with the requirement of how the tiny multiplication on D(2) is defined, ensures [Infsml.4] holds.
Vertical linearity ensures [Infsml.5], while cartesian closure ensures [Infsml.6]. 2

An important corollary of this is that any category with an infinitesimal object can be fully
and faithfully embedded in a complete Cartesian closed category which has tangent structure. The
trick is to embed the category in its presheaf category: it is well-known that the Yoneda embedding
preserves both finite limits and exponentials; thus the embedding turns the presheaf category into
a synthetic model from which a complete Cartesian closed subcategory with representable tangent
structure can be extracted using Proposition 5.10.

Corollary 5.11 Any category with representable tangent structure can be embedded in a synthetic
model, and can therefore be embedded in a complete Cartesian closed category with representable
tangent structure.

It is perhaps worth highlighting the differences between a standard model of synthetic differential
geometry and a synthetic model as introduced above. The lack of reference to a rig of line type is
clear. However as we shall see shortly such rigs can be constructed. More seriously in the standard
model D(n) ⊆ D(1)n and this subobject relationship (and the particular subobjects they must be)
is something we have not demanded in our more general notion of a synthetic model.

5.3 Infinitesimals and line objects

Given an infinitesimal object D, under mild assumptions, we will show how one can build various
associated line objects: these are rigs, R, of endomorphisms of D into which D embeds in a
structure preserving manner and satisfy the Kock-Lawvere axiom.

The discussion after proposition 5.4 already hints at how we can do this: we begin by assuming
the tangent space of D at 0 exists; that is, the following pullback exists:

1 D
0

//

(D ⇒℘ D)

1

!
��

(D ⇒℘ D) DD// DD

D

p
��

(this can be thought of as the 0-preserving maps from D to D). Since T = (−)D is a right adjoint, it
automatically preserves all limits, and hence Theorem 4.15 tells us that (D ⇒℘ D) is a differential
object; moreover, part (i) of the the theorem tells us that the map

(D ⇒℘ D)× (D ⇒℘ D)
〈〈π0i,π1i〉v〉 // (D ⇒℘ D)D

is an isomorphism. In the term logic, this map can be viewed as sending

(r1, r0) 7→ λd.r0 + r1 · (d)
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where  is the natural embedding D // (D ⇒℘ D), and multiplication is composition. Thus, we
already have an object with additive structure that satisfies the Kock-Lawvere axiom.

Unfortunately, for this object, composition will not neccesarily distribute over the addition (see
lemma 5.15 for when it does). In general, to get a rig object, we shall need to further restrict the
object (D ⇒℘ D) to those maps which “preserve addition” in a sense we define below.

The addition on (D ⇒℘ D) can be most easily expressed in the term logic by:

+ : (D ⇒℘ D)× (D ⇒℘ D) // (D ⇒℘ D); (f, g) 7→ λd.

{
ı0(x) 7→ f • x
ı1(x) 7→ g • x

}
δ(d)

(where • is application). The pattern matched “case” expresses a map from D ? D: for this case
construct to make sense, the two maps in the branches of the case must agree on the point – in
this case, of course, they both actually preserve the point.

To say a pointed map f : D //D preserves addition is the requirement that the following
diagram commutes:

D

f
��

δ // D ?D

f?f
��

D
δ
// D ?D

This is expressed in the term logic as an equality:

δ(f(x)) =

{
ı0(x) 7→ ı0(f(x))
ı1(x) 7→ ı1(f(x))

}
δ(x)

We then define the large line object to be the equalizer:

< // (D ⇒℘ D)
γ−−−−−−−→−−−−−−−→

D ⇒℘ δ
D ⇒ (D ?D)

where

γ(f) = λd.

{
ı0(x) 7→ ı0(f • x)
ı1(x) 7→ ı1(f • x)

}
δ(d)

D ⇒℘ δ(f) = λd.δ(f • d)

We must assume that this (joint) equalizer can be constructed.
It is routine – but involves some lengthy calculations – to check that < with multiplication given

by composition,
· : R×R //R; (f, g) 7→ λd.g • (f • d)

is a rig with addition as above. To give a flavor of the calculations involved we verify the distribu-
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tivity laws:

f · (g + h) = λd.(g + h) • (f • d)

= λd.

(
λd.

{
ı0(x) 7→ g • x
ı1(x) 7→ h • x

}
δ(d)

)
• (f • d)

= λd.

{
ı0(x) 7→ g • x
ı1(x) 7→ h • x

}
δ(f • d)

= λd.

{
ı0(x) 7→ g • x
ı1(x) 7→ h • x

}({
ı0(x) 7→ ı0(f • x)
ı1(x) 7→ ı1(f • x)

}
δ(d)

)

= λd.


ı0(x) 7→

{
ı0(x) 7→ g • x
ı1(x) 7→ h • x

}
ı0(f • x)

ı1(x) 7→
{
ı0(x) 7→ g • x
ı1(x) 7→ h • x

}
ı1(f • x)

 δ(d)

= λd.

{
ı0(x) 7→ g • (f • x)
ı1(x) 7→ h • (f • x)

}
δ(d)

= λd.

{
ı0(x) 7→ (f · g) • x)
ı1(x) 7→ (f · h) • x)

}
δ(d)

= (f · g) + (g · h)

and

(g + h) · h = λd.f • ((g + h) • d)

= λd.f •
({

ı0(x) 7→ g • x
ı1(x) 7→ h • x

}
δ(d)

)
= λd.

{
ı0(x) 7→ f • (g • x)
ı1(x) 7→ f • (h • x)

}
δ(d)

= λd.

{
ı0(x) 7→ (g · f) • x
ı1(x) 7→ (h · f) • x

}
δ(d)

= (g · f) + (h · f)

Notice that in the first calculation we use the fact that f : < preserves the addition, while the
second calculation uses the distribution associated with the case map.

We are now ready to state:

Theorem 5.12 In any category with an infinitesimal object, D, which admits the construction of
its large line object, <, the Kock-Lawvere axiom holds; that is the map

α : <× < // <D; (r1, r0) 7→ λd.r0 + r1 · (d)

is an isomorphism.

Proof: That the map  is well-defined requires that the multiplication of D preserves addition;
but this is exactly the condition [Infsml.4].
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From Theorem 4.15, on (D ⇒℘ D), the inverse to α is given by

f 7→ ({f}, f • ℘),

where the term {f} is the unique one given by the universality of the canonical lift. In the term
logic, its universal property can be expressed as saying that the map (D ⇒℘ D)D ×D×D //D :
(f, x, y) 7→ (f • x) • y can be written as

(f, x, y) 7→
{
ı0(y) 7→ {f} • (x� y)
ı1(y) 7→ (f • ℘) • y

}
δ(y). (†)

Thus, to show that < satisfies the Kock-Lawvere axiom, it suffices to show that if f preserves
addition, so does {f}. In order to show this we show that both {f}δ and δ({f}?{f} serve as {fδ}.
Clearly the former is immediately true so we shall focus on the latter: ı0(y) 7→

{
ı0(y) 7→ ı0({f} • y)
ı1(y) 7→ ı1({f} • y)

}
δ(x� y)

ı1(y) 7→ δ((f • ℘) • y)

 δ(y)

=

 ı0(y) 7→
{
ı0(y) 7→ ı0({f} • (x� y))
ı1(y) 7→ ı1({f} • (x� y))

}
δ(y)

ı1(y) 7→ δ((f • ℘) • y)

 δ(y)

=


ı0(y) 7→

{
ı0(y) 7→ ı0({f} • (x� y))
ı1(y) 7→ ı1({f} • (x� y))

}
δ(y)

ı1(y) 7→
{
ı0(y) 7→ ı0((f • ℘) • y)
ı1(y) 7→ ı1((f • ℘) • y)

}
δ(y)

 δ(y)

=


ı0(y) 7→

{
ı0(y) 7→ ı0({f} • (x� y))
ı0(y) 7→ ı0((f • ℘) • y)

}
δ(y)

ı1(y) 7→
{
ı1(y) 7→ ı1({f} • (x� y))
ı1(y) 7→ ı1((f • ℘) • y)

}
δ(y)

 δ(y)

=


ı0(y) 7→ ı0

({
ı0(y) 7→ {f} • (x� y))
ı0(y) 7→ (f • ℘) • y

}
δ(y)

)
ı1(y) 7→ ı1

({
ı1(y) 7→ {f} • (x� y)
ı1(y) 7→ (f • ℘) • y

}
δ(y)

)
 δ(y)

=

{
ı0(y) 7→ ı0((f • x) • y)
ı1(y) 7→ ı1((f • x) • y)

}
δ(y)

= δ((f • x) • y)

Notice the calculation uses [Infsml.4], the fact that f•x preserves addition, and that δ is associative
and commutative. 2

We cannot see any reason why < should be commutative. In fact, as far as we can see, the
infinitesimals need not even sit in the center of <, which is something one might expect. However,
this is a defect that we can correct by restricting to the commutator of D in <. To form this subrig
requires the following equalizer to be present:

<ε // <
φ−−→−−→
ψ
<D
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where φ(r) = λd.((d) · r) and ψ(r) = λd.(r · (d)). It is standard that this does define a subrig.
What is not so obvious, but was noted in [Rosický 1984], is that this subrig of < also satisfies the
Kock-Lawvere axiom. We shall refer to this rig as the Rosický line object.

Proposition 5.13 In any category with an infinitesimal object, in which the Rosický line object,
<ε, can be constructed, <ε satisfies the Kock-Lawvere axiom.

Proof: We must check that when f : <Dε (so that d′ � ((f • d) • y) = (f • d) • (d′ � y)) then
{f} : <ε. That is if f • d commutes with the action of D then so will {f}. As above we use the
universal property of {f} to establish that d′ � ({f} • y) = ({f} • (d′ � y):{

ı0(y) 7→ {f} • (d′ � x� y)
ı1(y) 7→ (f • ℘) • (d′ � y)

}
δ(y) =

{
ı0(y) 7→ {f} • (x� y)
ı1(y) 7→ (f • ℘) • y

}
δ(d′ � y)

= (f • x) • (d′ � y)

= d′ � ((f • x) • y)

= d′ �
({

ı0(y) 7→ {f} • (x� y)
ı1(y) 7→ (f • ℘) • y

}
δ(y)

)
=

{
ı0(y) 7→ d′ � ({f} • y)
ı1(y) 7→ d′ � ((f • ℘) • y)

}
δ(y)

=

{
ı0(y) 7→ d′ � ({f} • y)
ı1(y) 7→ (f • ℘) • (d′ � y)

}
δ(y)

2

We are supposing that neither < or <ε are commutative rigs, in general, yet it is usual to start
with a commutative rig of line type in order to construct a model of synthetic geometry. This
suggests that we should consider the center of < (which lies inside <ε): we shall denote it by R
and call it the Lawvere line object. Notice that to form this rig we need < to be an exponent
object, as it is defined by the equalizer

R // <
φ−−→−−→
ψ
<<

where, much as above, φ(r) = λr′.(r′ · r) and ψ(r) = λr′.(r · r′). Again, it is standard that this
defines a subrig. What is less obvious is that it still satisfies the Kock-Lawvere axiom, which we
now check:

Proposition 5.14 In any category with an infinitesimal object, if the Lawvere line object R can
be constructed, then R satisfies the Kock-Lawvere axiom.

Proof: Again we must check that when f : RD (so that r′ · (f • d) = (f • d) · r′) then {f} : R.
That is, if f • d is in the center of <, then {f} is also. Again we use the universal property of {f}
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to establish that r′ · {f} = {f} · r′:{
ı0(y) 7→ ({f} · r′) • (x� y)
ı1(y) 7→ ((f • ℘) · r′) • y

}
δ(y) =

{
ı0(y) 7→ r′ • ({f} • (x� y))
ı1(y) 7→ r′ • ((f • ℘) • y)

}
δ(y)

= r′ •
({

ı0(y) 7→ {f} • (x� y)
ı1(y) 7→ (f • ℘) • y

}
δ(y)

)
= r′ • ((f • x) • y)

= ((f • x) · r′) • y
= (r′ · (f • x)) • y
= (f • x) • (r′ • y)

=

({
ı0(y) 7→ {f} • (x� y)
ı1(y) 7→ (f • ℘) • y

}
δ(r′ • y)

)
=

{
ı0(y) 7→ {f} • (r′ • (x� y))
ı1(y) 7→ (f • ℘) • (r′ • y)

}
δ(y)

=

{
ı0(y) 7→ (r′ · {f}) • (x� y)
ı1(y) 7→ (r′ · (f • ℘)) • y

}
δ(y)

=

{
ı0(y) 7→ (r′ · {f}) • (x� y)
ı1(y) 7→ ((f • ℘) · r′) • y

}
δ(y)

2

Thus, from an infinitesimal object one can obtain at least three line objects. The last – which we
referred to as the Lawvere line object – is a commutative line object and allows one to reconceive
of the setting as arising though a commutative line object. In fact, by moving to the presheaf
category (recalling that the Yoneda embedding preserves exponentials) in this manner one can
always construct a commutative line object. However, what one cannot guarantee is that the
infinitesimal object is exactly {d|d2 = 0} ⊆ R, indeed nor can one guarantee the form of D(n) as
mandated in synthetic differential geometry.

As discussed in proposition 5.8, in any category with an infinitesimal object there is a map

χ : D ?D //D ×D; z 7→
{
ı0(z) 7→ (z, ℘)
ı1(z) 7→ (℘, z)

}
z

if pulling back along χ preserves the pushout diagram for A ? A (as happens in any topos) then it
is easy to see that χ must be monic. However, if χ is monic we can show:

Lemma 5.15 In a category with an infinitesimal object, D, if the map χ : D ? D // D × D is
monic then every zero preserving endomorphism of D preserves addition.

Proof: Note that δχ = ∆ and χ is natural so χ(f × f) = (f ? f)χ but then

fδχ = f∆ = ∆(f × f) = δχ(f × f) = δ(f ? f)χ

so that fδ = δ(f ? f). 2

This means that [Infsml.4] is unnecessary, and the large line object < can be constructed
as D ⇒℘ D; that is, the tangent space of D at 0. However, it also means that one may regard
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D(n) to be a subobject of Dn. We have, thus, almost returned to the perspective of (additive)
synthetic differential geometry: the remaining difference is that we have not required D to be all
of {d|d2 = 0}, or D(2) to be all of {(d1, d2) ∈ D ×D | d1d2 = 0}.

5.4 Models of infinitesimal objects

Our objective now is to provide a basic example of a category with an infinitesimal object. The
example we shall consider is the opposite of the category of finitely presented commutative rigs,
crigop

fp. We shall show that in this category, the object

N[ε] := N[x]/(x2 = 0)

is an infinitesimal object. As the category has all finite limits, we can build the large line object and
we shall show that in this case it coincides with the Lawvere line object. This provides an example
of a rig of line type; to obtain a synthetic model, one passes to its presheaf category Setcrigfp . One
can then use Kock’s construction, Proposition 5.10, to extract a finitely-complete Cartesian closed
category with a representable infinitesimal object.

While the construction of a complete Cartesian closed category with an infinitesimal object
from a category with an infinitesimal object can be carried out quite generally by passing to the
presheaf category and using Kock’s construction, there is another way to obtain this model using
some observations from [Rosický 1984]. As we shall show, if X has representable tangent structure,
then Xop also has tangent structure, called the dual tangent structure. Applying this to the above
example shows that crigfp has tangent structure, a fact that Rosický himself was aware of. Finally,

Rosický has a further construction: he observed that the full subcategory of functors in Setcrigfp

which preserve the tangent structure limits itself has tangent structure. As we shall see, Rosický’s
construction produces the same tangent structure as Kock’s construction.

We start with the following basic observation:

Proposition 5.16 N[ε] := N[x]/(x2 = 0) is an infinitesimal object in crigop
fp.

Proof: In crigfp the multiplication on the infinitesimal object is given by:

� : N[ε] // N[ε]⊗ N[ε];x 7→ x⊗ x

the zero map is given by
℘ : N[ε] // N;x // 0.

The pushout powers are here pullback powers and they are the objects N(n) = N[x1, ..., xn]/(xixj =
0) and the comonoid map is

δ : N(2) // N[ε];
x1 7→ x
x2 7→ x

The reader is left to check [Infsml.4] and [Infsml.5], which one can do quite concretely.
It remains to argue that N[ε] is an exponent object. This is a standard result from commutative

algebra, and uses a series of equivalences:

S(ΩA) //B a rig map

ΩA
//B an A-module map

A //B an A-derivation

A
f
// N[ε]⊗B a rig map
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We explain the series of equivalences starting at the top: S(ΩA) is the symmetric rig construction
on the A-module ΩA. A map from this algebra corresponds to an A-module map ΩA

//B where
B is viewed as an A-module using the rig map A // S(ΩA) // B. Now A // ΩA is the Kähler
module of differential forms, and corresponds to derivations from A to B (still being regarded as
an A-module). But derivations exactly correspond to maps f : A //N[ε]⊗B as N[ε]⊗B is the rig
B×B with addition pointwise and the “dual” multiplication (b0, b

′
0)·(b1, b′1) = (b0 ·b1, b0 ·b′1 +b1 ·b′0):

the second component of the map to this algebra gives a derivation (the first is a rig map from
A // B which allows B to be regarded as an A-module). This movement can be done within
finitely presented rigs.

As this category has finite limits, the exponential of the pushout objects are given by pullbacks.
2

This already gives us an example of a category with an infinitesimal object. To get a synthetic
model, we must identify a rig of line type. We only have sufficient structure to build the large line
object. However, a straightforward calculation shows that N[x] is this line object and, as this is a
commutative rig, it is also the Lawvere line object.

To check that the presheaf category is a synthetic model it is necessary to know that the rig
of line type is infinitesimal. However, as this calculation is entirely within the Yoneda objects,
the result is guaranteed. Using Kock’s construction, we can extract from the presheaf category a
Cartesian closed category with finite limits which contains the infinitesimal object and its Lawvere
line object.

There is an alternative approach to the construction which brings to light another important
aspect of tangent structure:

Proposition 5.17 (Dual tangent structure) 7 If X is a category with tangent structure such
that the tangent functor T has a left adjoint S, and each Tn has a left adjoint Sn, then Xop has
“dual” tangent structure on S and the functors Sn.

Proof: The argument uses (Australian) mates and is quite general: a natural transformation
between right adjoints induces a natural transformation in the opposite direction between the
left adjoints. This immediately means we obtain a dual structure satisfying all the equational
coherences expected of cotangent structure on the left adjoints. What is less obvious is that the
universal requirements also transfer. To show this it suffices to show that mating in this manner
also carries limit cones into colimit cones and to show this it suffices to demonstrate just that cones
transfer bijectively!

7Note that dual tangent structure is not giving a cotangent bundle; it is instead giving another tangent bundle,
but on the opposite category.
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The definition of mates is as follows:

F0(A)

F0(η1)
��

f]A=g
// F1(A)

F0(G1(F1(A)))
F0(fF1(A))

// F0(G0(F1(A)))

ε0

OO

G1A

η0
��

f=g[ // G0(A)

G0(F0(G1(A)))
G0(gG1(A))

// G0(F1(G1(A)))

G0(ε1)

OO

where (ηi, εi) : Fi ` Gi : X // X are the adjoints.
To show that cones transfer bijectively it suffices to show that the commuting triangles deter-

mined by the arrows in the diagram transfer. Recall that the arrows in the diagram are natural
transformations and so the transfer need not fix the objects. Here is the correspondence:

F0(A)

F0(p0)ε0 ""FFFFFFFF

f]=g // F1(A)

q1=F1(p1)ε1||yyyyyyyy

X

A
p0=η0G0(q)

""FFFFFFFFF
p1=η1G1(q1)

||xxxxxxxxx

G1(X)
f=g[

// G0(X)

2

Corollary 5.18 If X has an infinitesimal object D, then Xop has tangent structure.

Proof: As X has an infinitesimal object, it has representable tangent structure, with tangent
functor T = ( )D and pullbacks Tn = ( )D(n). Each of these have a left adjoint D(n) × , so that
there is an induced dual tangent structure on Xop. 2

Applying this to crigop
fp shows that N[ε] ⊗ is a tangent functor on crigfp. This structure

(on commutative rings) was a basic example in [Rosický 1984]. Explicitly, the category of finitely
presented commutative rigs has tangent structure, with

TA := A[x]/(x2 = 0),

T2A := A[x, y]/(x2 = 0, y2 = 0, xy = 0),

T 2A = A[x, y]/(x2 = 0, y2 = 0),

and
+ : T2A // TA; a0 + a1x+ a2y 7→ a0 + (a1 + a2)x,
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` : TA // T 2A; a0 + a1x 7→ a+ a1xy,

c : T 2A // T 2A; a0 + a1x+ a2y + a3xy 7→ a0 + a2x+ a1y + a3xy.

The tangent functor TA of this example may, of course, less explicitly be written as N[ε]⊗A.
Now, a general way of constructing a category with tangent structure was provided in [Rosický 1984]:

Proposition 5.19 (Rosický’s construction) If X is a small category with tangent structure T ,
then the functors from X to set which preserve the pullbacks and equalizer conditions of the tangent
structure also have tangent structure, with

T ∗(F ) = TF, T ∗(α) = αT .

Furthermore, this is always Cartesian tangent structure. Denote this tangent structure by ROS(X, T ).

The proposition, which is broadly applicable, is immediate. The only somewhat surprising
aspect is that the resulting category always has Cartesian tangent structure even if X does not.
This is because:

(T ∗(F ×G))(X) = (F ×G)(T (X)) = F (T (X))×G(T (X))

= T ∗(F )(X)× T ∗(G)(X) = (T ∗(F )× T ∗(G))(X)

In particular, we may apply Rosický’s constructions to crigfp with its dual tangent structure.

This gives us a subcategory of ROS[crigfp] ⊆ setcrigfp , and it is reasonable to wonder how it com-
pares to the subcategory determined by Kock’s construction. In fact, they are the same category,
and we can show this quite generally.

Proposition 5.20 Suppose that X is a finitely complete small category with an infinitesimal object
D. Then the tangent structure

([Xop, set]iv, ( )Y(D))

of proposition 5.10 is the same as the tangent structure

ROS(Xop, (D × ))

of proposition 5.19.

Proof: For an object F and object S ∈ X, consider the definition of the tangent functor T ∗ in
ROS([Xop, (D × ))]:

T ∗F (S) = F (D × S) = [Y(D × S), F ] = [Y(D)× Y(S), F ] = [Y(S), FY(D)] = FY(D)(S),

which is the same as the definition of the tangent functor in ([Xop, set]iv, ( )γ(D)). A similar
argument shows that the action on morphisms and the forms of the natural transformations also
agree.

The only thing left to show is that the categories have the same set of objects. That is, we
wish to show that F preserves the pullbacks and equalizers of the tangent structure (Xop, (D× ))
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if and only if F is vertically and infinitesimally linear. Now F is infinitesimally linear if and only
if the diagram

FY(D) F//

FY(D(2))

FY(D)
��

FY(D(2)) FY(D)// FY(D)

F
��

is a pullback. Since limits in [Xop, set] are pointwise, this is a pullback if and only if

FY(D)(S) F (S)//

FY(D(2)(S)

FY(D)(S)
��

FY(D(2)(S) FY(D)(S)// FY(D)(S)

F (S)
��

is a pullback for each S ∈ X. But by the above argument, this is the same as the diagram

F (D × S) F (S)//

F (D(2)× S)

F (D × S)
��

F (D(2)× S) F (D × S)// F (D × S)

F (S)
��

which is F applied to the pullback diagram for the tangent structure ([Xop, (D × )). Thus F is
infinitesimally linear if and only if its preserves the pullback diagrams of the tangent structure
(Xop, (D × )); similarly F is vertically linear if and only if it preserves the equalizer diagrams of
the tangent structure (Xop, (D × )). Thus the categories have the same objects, as required. 2

Note that this implies that ROS(Xop, (D× )) is Cartesian closed, a fact which is not immediately
obvious from the definition. Finally, we note that the tangent structure

ROS(Xop, (D × )) = ([Xop, set]iv, ( )Y(D))

is, of course, itself representable. But this implies that the tangent bundle functor has a left adjoint,
so that by proposition 5.17, the category [Xop, set]op

iv also has a “dual” tangent structure. For ex-
ample, with X = crigop

fp, we get a new example of tangent structure, on the category [crigfp, set]op
iv .

6 Restriction tangent structure and manifolds

Our goal in this section is to show the category of manifolds built from a category with tangent
structure also has tangent structure. In particular, we shall apply the result to differential restriction
categories to show that manifolds built from categories from “smooth partial maps” have tangent
structure. This will show not only that the usual category of smooth manifolds is a tangent category,
but that less standard models for analysis, such as the category of smooth convenient manifolds of
[Kriegl and Michor 1997], are tangent categories.

Restriction categories [Cockett and Lack 2002] were defined so as to give an equational presen-
tation of categories of partial maps. Moreover, restriction categories in which compatible partial
maps can be joined is an appropriate abstract setting in which to describe manifolds, as done in
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[Grandis 1989]. In [Cockett et al. 2011], the authors combined restriction structure with Cartesian
differential structure so as to give an equational presentation of categories of smooth partial maps,
with the resulting structure being called differential restriction categories.

An abstract category of manifolds built of out a differential restriction category will not again
be a differential restriction category as there is no longer a differential operation of the required
type. However, the reader might expect that such an abstract “category of smooth manifolds”
would have an associated tangent bundle and that the tangent structure of differential restriction
category would lift to tangent structure on the manifold completion. This is precisely what we show
in this section and it provides an abstract proof that the various categories of smooth manifolds
constructed from differential restriction categories have tangent structure.

6.1 Differential restriction categories

To begin, we first recall the definition of a restriction category from [Cockett and Lack 2002]:

Definition 6.1 Given a category, X, a restriction structure on X gives for each map A
f−→ B,

a map, A
f−→ A, satisfying four axioms:

[R.1] f f = f ;

[R.2] If dom(f) = dom(g) then g f = f g ;

[R.3] If dom(f) = dom(g) then g f = g f ;

[R.4] If dom(h) = cod(f) then fh = fh f .

A category with a specified restriction structure is a restriction category.

The canonical example is that of partial functions between sets, where, given a partial function
f : X // Y , f is essentially the identity on the domain of definition of f :

f(x) =

{
x if f(x) defined

undefined otherwise.

Recall also that map in a restriction category is said to be total if f = 1.
We now recall the definition of a differential restriction category from [Cockett et al. 2011] –

the reader may usefully compare it with the definition 4.1 of Cartesian differential categories.

Definition 6.2 A differential restriction category is a Cartesian left additive restriction cat-
egory with an operation

X
f // Y

X ×X
D(f)

// Y

(“differentiation”) such that

[DR.1] D(f + g) = D(f) +D(g) and D(0) = 0;
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[DR.2] 〈a+ b, c〉D(f) = 〈a, c〉D(f) + 〈b, c〉D(f) and 〈0, a〉D(f) = af0;

[DR.3] D(π0) = π0π0, and D(π1) = π0π1;

[DR.4] D(〈f, g〉) = 〈D(f), D(g)〉;

[DR.5] D(fg) = 〈D(f), π1f〉D(g);

[DR.6] 〈〈a, 0〉, 〈c, d〉〉D(D(f)) = c〈a, d〉D(f);

[DR.7] 〈〈0, b〉, 〈c, d〉〉D(D(f)) = 〈〈0, c〉, 〈b, d〉〉D(D(f));

[DR.8] D(f) = (1× f)π0 = π1f π0;

[DR.9] D(f) = 1× f = π1f .

Note the addition of a restriction in axioms [DR.2] and [DR.6]: this is necessary since we
must keep track of the partiality of the maps that are lost across the equality. The 8th and 9th
axioms demand that the differential operator be total in its first variable.

Just as for Cartesian differential categories, an alternate version of the 6th and 7th axioms is
more relevant for tangent structure.

Proposition 6.3 The axioms for a differential restriction category are equivalently given by re-
placing [DR.6] and [DR.7] with the following axioms:

• [DR.6′] 〈〈a, 0〉, 〈0, d〉〉D(D(f)) = 〈a, d〉D(f);

• [DR.7′] 〈〈a, b〉, 〈c, d〉〉D(D(f)) = 〈〈a, b〉, 〈c, d〉〉D(D(f)).

Proof: Assume that D satisfies the usual set of axioms. Clearly, it then satisfies [DR.6′], by
setting c = 0. For [DR.7′], consider:

〈〈a, b〉, 〈c, d〉〉D2f

= 〈〈a, 0〉+ 〈0, b〉, 〈c, d〉〉D2f

= 〈〈a, 0〉, 〈c, d〉〉D2f + 〈〈0, b〉, 〈c, d〉〉D2f by [DR.2],

= c 〈a, d〉D2f + b 〈〈0, c〉, 〈b, d〉〉D2f by [DR.6] and [DR.7],

= b 〈a, d〉D2f + c 〈〈0, c〉, 〈b, d〉〉D2f by [DR.6] and [DR.7],

= 〈〈a, 0〉, 〈b, d〉D2f + 〈〈0, c〉, 〈b, d〉〉D2f by [DR.6] again,

= 〈〈a, c〉, 〈b, d〉〉D2f by [DR.2].

as required.
Now assume that D satisfies the alternate set of axioms, with [DR.6] and [DR.7] replaced

with [DR.6′] and [DR.7′]. Clearly, it then satisfies [DR.7], by setting a = 0. To show that it
satisfies [DR.6], we begin with a short calculation:

〈a, d〉Df = 〈a, d〉Df

= 〈a, d〉π1f

= 〈a, d〉π1f

= a df = a df
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Then to show [DR.6], consider:

〈〈a, 0〉, 〈b, d〉〉D2f

= 〈〈a, b〉, 〈0, d〉〉D2f (by [DR.7′])

= 〈〈a, 0〉, 〈0, d〉〉D2f + 〈〈0, b〉, 〈0, d〉〉D2f (by [DR.2])

= 〈a, d〉Df + 〈〈0, 0〉, 〈b, d〉〉D2f (by [DR.6′] and [DR.7′])

= 〈a, d〉Df + 〈b, d〉Df 0 (by [DR.2])

= 〈b, d〉Df 〈a, d〉Df
= 〈b, d〉Df 〈a, d〉Df 〈a, d〉Df
= b df a df 〈a, d〉Df (by the calculation above)

= b 〈a, d〉Df 〈a, d〉Df
= b 〈a, d〉Df.

2

We recall a number of examples.

Example 6.4 Any Cartesian differential category is a differential restriction category, when equipped
with the trivial restriction structure (f = 1 for all f).

The standard non-trivial example is:

Example 6.5 The categories whose objects are the natural numbers, with a map f : n // m
consisting of a smooth partial function defined on an open subset of Rn to Rm.

From [Cockett et al. 2011], we also have the following more complicated example:

Example 6.6 If R is a commutative ring, then the restriction category of rational functions over
R, RatR, is a differential restriction category.

Extending the result of [Blute et al. 2012], we also have:

Example 6.7 The category of convenient vector spaces and smooth maps defined on smooth open
subsets is a differential restriction category.

In any restriction category, one can make the following definitions:

Definition 6.8 Two parallel maps f, g in a restriction category are compatible, written f ^ g, if
f g = g f .

Compatibility captures the idea of f and g being equal wherever they are both defined. Note that
compatibility is not transitive relation. Recall also the notion of when a map f is less than or equal
to a map g:

Definition 6.9 For parallel maps f, g in a restriction category, write f ≤ g if f g = f .

This captures the notion of f having the same values as g, but with a smaller domain of definition.
This is a partial order.

As a helpful tool for certain calculations, we note the following results from [Cockett et al. 2011]:
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Proposition 6.10 In a differential restriction category:

(i) D(fg) = (1× f)D(g) = π1f D(g);

(ii) If f ≤ g then D(f) ≤ D(g);

(iii) If f ^ g then D(f) ^ D(g).

6.2 Restriction tangent structure

Just as Cartesian differential categories are the tangent categories in which all objects are differen-
tial, so too should differential restriction categories be the tangent restriction categories in which
all objects are differential. To make this precise, we must define tangent restriction structure.

We first give the restriction version of additive bundles (compare with definition 2.1).

Definition 6.11 If A is an object in a restriction category X then an additive bundle over A
consists of the following:

• a total map X
p //A such that the restriction pullback of n copies of X

p //A exists; denote
these by Xn, with structure maps πi : Xn

//X;

• total maps + : X2
// X and 0 : M // X, with +p = π0p = π1p and 0p = 1 such that

this operation is associative, commutative, and unital; that is, each of the following diagrams
commute:

X2 X
+

//

X3

X2

〈π0,〈π1,π2〉+〉 ��

X3 X2
〈〈π0,π1〉+,π2〉// X2

X

+��
X2 X

+
//

X2

X2

〈π1,π0〉 ��

X2

X

+

((RRRRRRRRRRR

X2 X
+

//

X

X2

〈p0,1〉 ��

X

X

1

((RRRRRRRRRRR

A restriction pullback is a lax pullback, with commutativity replaced by inequalities. For restriction
categories restriction limits are the “correct” definition of limit. For further details and the exact
definition, see [Cockett and Lack 2007].

When restricted to the total maps of X, an additive bundle over A is the same as asking for
a commutative monoid in the slice category Total(X)/A. There appears to be no notion of slice
category for restriction categories which corresponds to the requirement that the pullbacks be
restriction pullbacks, while giving the notion of morphism that we wish:

Definition 6.12 Suppose that p : X // A and q : Y // B are additive bundles. An additive
bundle morphism consists of a pair of maps f : X // Y , g : A // B so that the following
diagrams commute:

A Bg
//

X

A

p
��

X Y
f // Y

B

q
��

X Y
f

//

X2

X

+ ��

X2 Y2
〈π0f,π1f〉 // Y2

Y

+��
X Y

f
//

A

X

0 ��

A B
g // B

Y

0��

It is important to note that even though these maps may be partial, we still ask that the diagrams
commute on the nose (rather than with an inequality).
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Proposition 6.13 If X is a restriction category, then with the obvious composition, restriction,
and identities, additive bundles in X and their morphisms form a restriction category. If X has
joins, so does this category.

Proof: For composites, we define (f1, g1) ◦ (f2, g2) := (f1f2, g1g2). For such a map, the first and
third diagrams for an additive bundle morphism obviously commute, while the second diagram
commutes since

〈π0f1f2, π1f1f2〉+

= 〈π0f1, π1f2〈π1f2, π2f2〉+ (by the universal property of 〈, 〉)
= 〈π0f1, π1f2〉+ f2 (since f2 is an additive bundle morphism)

= f1f2 + (since f1 is an additive bundle morphism)

as required.
For restrictions, we define (f, g) := (f , g ). This satisfies the first diagram:

pg = pg p = fq p = f p

since q is total. For the second diagram,

+f = +f +

= 〈π0f , π1f 〉 +

= π0f π1f + (since + is total)

= π0f π0, π1f π1 +

= 〈π0f , π1f 〉+

as required. For the last diagram,

0f = 0f 0 = g 0 0 = g 0

since 0 is total.
If X has joins, we define

∨
i(fi, gi) := (

∨
i fi,

∨
i gi). The first and third diagrams commute since

joins preserve composition. The second diagram requires slightly more care. We first show that for
any map (f, g) from p : X //A to q : Y //B, π0f = π1f :

π0f = π0fp (since p is total)

= π0pg (by the first diagram for (f, g))

= π1pg

= π1fp (by the first diagram for ((f, g))

= π1f (since p is total)

Now, we need to show that the pair (
∨
i fi,

∨
j fj) satisfies the second diagram to be an additive
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bundle morphism:

〈π0

∨
i

fi, π1

∨
j

fj〉+ =
∨
i,j

〈π0fi, π1fj〉+

=
∨
i,j

〈π0fi, π1fi π1fj〉+

=
∨
i,j

〈π0fi, π1fi π1fj〉+ (by the result above)

=
∨
i,j

〈π0fi, π1fj π1fi〉+ (since fi ^ fj)

=
∨
i,j

π2fj 〈π0fi, π1fi〉+

=
∨
i

〈π0fi, π1fi〉+

=
∨
i

+fi = +
∨
i

fi.

2

With the restriction version of additive bundles defined, we turn to the restriction version
of tangent structure. There are three main differences: (i) the tangent functor should preserve
restrictions, (ii) the pullbacks and equalizers must be restriction pullbacks and equalizers, and (iii)
all natural transformations must be total.

Definition 6.14 Tangent restriction structure for a restriction category X consists of a re-
striction preserving functor T : X // X and associated total transformations such that:

• (tangent bundle is additive) for each M ∈ X, TM has the structure of an additive bundle
over M ; so we have total maps pM : TM //M , restriction pullbacks Tn(M), and total maps
+M : T2M // TM , 0M : M // TM ; we also ask that for each f : M //N , the pair (Tf, f)
is an additive bundle morphism;

• (preservation of restriction pullbacks) for each n, k ∈ N, Tn preserves the restriction
pullbacks of k copies of p;

• (vertical lift) there is a total natural transformation T
` // T 2 such that for each M , the

pair (`M , 0M ) is an additive bundle morphism from (p : TM //M) to (Tp : T 2M // TM);

• (canonical flip) there is a total natural transformation T 2 c //T 2 such that for each M , the
pair (cM , 1) is an additive bundle morphism from (Tp : T 2M //TM) to (pT : T 2M //TM);

• (coherence of ` and c) we have c2 = 1, `c = `, and the following diagrams commute:

T 2 T 3
`T

//

T

T 2

` ��

T T 2` // T 2

T 3

T (`)��
T 3 T 3

T (c)
//

T 3

T 3

cT ��

T 3 T 3T (c) // T 3

T 3T 3 T 3
cT

//

T 3

T 3

T 3 T 3cT // T 3

T 3

T (c)��
T 2 T 3

T (`)
//

T 2

T 2

c ��

T 2 T 3T 3

T 3

cT��

T 2 T 3`T // T 3 T 3T (c) //
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• (universality of vertical lift) the map

T2M
v:=〈π0`,π10T 〉T (+) // T 2M

is the restriction equalizer of

T 2M TM
T (p) //

T 2M TM
T (p)p0

//

A restriction category with tangent structure is a tangent restriction category.
If X has restriction products and T preserves them, then (X,T) is a Cartesian tangent re-

striction category .

Note that the total maps of any tangent restriction category is always an (ordinary) tangent
category. Thus, this definition strictly subsumes the definition of a tangent category.

Due to the naturality of p, restriction tangent structure automatically preserves joins, if they
exist.

Proposition 6.15 If (X,T) is restriction tangent category, then:

(i) Tf = pf .

(ii) If X has joins, then T preserves them.

Proof:

(i) since p is total, T (f) = T (f)p = pf by naturality of p.

(ii) Consider:

∨
i∈I

T (fi) =
∨
i∈I

T

fi ∨
j∈I

fj

 (since fi ≤
∨
j ∈ I)

=
∨
i∈I

T (fi)T

∨
j∈I

fj

 (since T is a restriction functor)

=
∨
i∈I

pfi T

∨
j∈I

fj

 (by (i))

=
∨
i∈I

pfi T

∨
j∈I

fj


= p

∨
i∈I

fi T

∨
j∈I

fj


= T

(∨
i∈I

fi

)
T

∨
j∈I

fj

 (by (i))

= T

(∨
i∈I

fi

)
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as required.

2

We now turn to the promised connection between differential restriction categories and tangent
restriction structure.

Proposition 6.16 Any differential restriction category has a tangent restriction structure given
by:

TM := M ×M,Tf := 〈Df, π1f〉

with:

• p := π1;

• Tn(M) := M ×M . . .×M (n+ 1 times);

• +〈a, b, c〉 := 〈a+ b, c〉, 0(a) := 〈0, a〉;

• l(〈a, b〉) := 〈〈a, 0〉, 〈0, b〉〉;

• c(〈〈a, b〉, 〈c, d〉〉) := 〈〈a, c〉, 〈b, d〉〉.

Proof: The proof is almost identical to that of proposition 4.7, as for most axioms the restrictions
stay hidden. For example, consider the proof of [DR.5]:

T (f)T (g) = 〈Df, π1f〉〈Dg, π1g〉 = 〈D(fg), π1fg〉 = T (fg)

When we consider the term 〈Df, π1f〉π1, the result is Df π1f ; but since Df = π1f , the Df term
vanishes. A similar phenomenon occurs with the other axioms.

Since [DR.2] is different, we demonstrate the proof of naturality of 0:

0MT (f) = 〈0, 1〉〈Df, π1f〉 = 〈f 0, f〉 = f〈0, 1〉 = f0N .

Finally, T preserves restrictions since:

T (f ) = 〈D(f , π1f 〉 = 〈π1f π0, π1f π1〉 = π1f

T (f) = 〈D(f), π1f〉 = D(f)π1f = π1f .

2

Just as in the total case, restriction tangent structure on differential structure gives a differential
restriction category.

Definition 6.17 An object M in a Cartesian restriction tangent category has differential struc-
ture if it has a total map p̂ : TM //M such that

M
p̂←−− TM p //M
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is a restriction product diagram, and M has the structure of a (total) commutative monoid σ :
M ×M //M , ζ : 1 //M that is compatible with the addition and zero of the tangent structure;
that is, such that

1 M
ζ

//

M

1

!
��

M TM
0M // TM

M

p̂

��
and

M ×M Mσ
//

T2M

M ×M

〈π0p̂,π1p̂〉
��

T2M TM
+M // TM

M

p̂

��

commute.

Theorem 6.18 Suppose (X,T) is a Cartesian restriction tangent category. Let Diff(X,T) denote
the restriction category whose objects are differential structures, with a map from (A, p̂A, σA, ζA) to
(B, p̂B, σB, ζB) simply consisting of a map f : A //B. Then:

(i) Diff(X,T) is a Cartesian left additive restriction category;

(ii) Diff(X,T) is a differential restriction category, with D(f) given by

A×A
〈π0,π1〉 // TA

T (f) // TB
p̂B //B.

Proof: Again, most of the theorem is similar to the total case. By naturality of p, we can
determine that:

T (f) = 〈T (f)π0, T (f)π1〉 = 〈Df, π1f〉

Similarly,
T2(f) = 〈〈π0, π1π0〉D(f), 〈π1D(f), π1π1f〉

and

D2(f) = T (D(f))π0 = T (T (f)π0)π0 = T 2(f)T (π0)π0 = T 2(f)〈π0π0, π1π0〉π0 = T 2(f)π0π0.

For [DR.8] we have D(f ) = T (f )π0 = π1f π0 and for [DR.9] we have D(f) = T (f)π0 = T (f) =
π1f . For [DR.2], by naturality of 0, we have:

〈0, a〉D(f) = 〈0, a〉T (f)π0 = a〈0, 1〉T (f)π0 = a0NT (f)π0

= af0Mπ0 = af〈0, 1〉π0 = af 0.

2

6.3 Manifolds and tangent Structure

In the previous section, we showed that a differential restriction category is canonically a restric-
tion tangent category. Our goal now is to show that the manifold completion of a category with
restriction tangent structure also has restriction tangent structure. In particular, this shows that
the total category of such a category of manifolds has (total) tangent structure.

We begin by briefly recalling the notion of the manifold completion of a join restriction category
as introduced in [Grandis 1989].
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Definition 6.19 Let X be a join restriction category. An atlas in X consists of a family of objects
(Xi)i∈I of X, together with, for each i, j ∈ I, a map φij : Xi

//Xj such that for each i, j, k ∈ I,

[Atl. 1] φiiφij = φi,j (partial charts);

[Atl. 2] φijφjk ≤ φik (cocycle condition);

[Atl. 3] φij is the partial inverse of φji.

Definition 6.20 Suppose (Xi, φij) and (Yk, ψkh) are atlases in X. An atlas map

A : (Xi, φij) // (Yk, ψkh)

is a family of maps Xi
Aik // Yk such that

[AtlM. 1] φiiAik = Aik;

[AtlM. 2] φijAjk ≤ Aik,

[AtlM. 3] Aikψkh = Aik Aih.

Morphisms of atlases are composed by matrix composition. Given atlas maps

U
A // V

B //W

we define (AB)im =
∨
hAihBhm. The identity map for an atlas is the atlas itself. There is a

restriction given by

A ij =

(∨
h

Aih

)
φij .

Theorem 6.21 (Grandis) If X is a join restriction category, then Mf(X), with objects atlases,
morphisms atlas maps, and composition, identities, and restriction as described above, is a join
restriction category.

The following is easily checked:

Proposition 6.22 Mf is an endofunctor on join restriction categories and join preserving restric-
tion functors, where

Mf(F )(Ui, φij) := (F (Ui), F (φij)),

and
Mf(F )(Aik) = (F (Aik)).

Moreover, if F
α //G is natural, then we get a natural transformation from Mf(F ) to Mf(G) by

(F (Ui), F (φij))
F (φij)αj=αiG(φij) // (G(Ui), G(φij))

so that Mf is a 2-functor. If α is total, then Mf(α) is as well.
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Thus, since we have a 2-functor, applying Mf to a tangent functor T : X // X gives all
of the equational properties of tangent structure. The only thing left to check, then, is that
(Mf(X),Mf(T )) has the required restriction pullbacks and equalizers. For this, recall from lemma
2.12 that v : T2M // T 2M being the equalizer of T (p) and T (p)p0 is equivalent to asking that

M TM
0
//

T2M

M

π0p ��

T2M T 2M
v // T 2M

TM

T (p)��

is a pullback (and the proof generalizes to the restriction case). Thus, we only need to check that
Mf lifts certain functorial restriction pullbacks.

We begin by recording some useful results regarding these types of restriction pullbacks.

Proposition 6.23 Suppose that we have functors F,G,H : X //Y between restriction categories,
natural transformations α : F //H,β : G //H, and for each X ∈ X, there is an object PX ∈ Y
and maps lX : PX // FX, rX : PX //GX so that

FX HXαX

//

PX

FX

lX ��

PX GX
rX // GX

HX

βX��

is a restriction pullback. Then:

(i) P is a restriction functor, with P (f) := 〈lXF (f), rXG(f)〉;

(ii) if F and G preserve joins, then so does P ;

(iii) if both α and β are total, then l and r are natural.

Proof:

(i) First, we need to check P (f) is well-defined; that is, we need lXF (f)αY ^ rXG(f)βY . In
fact, they are equal as lXF (f)αY = lXαXf = rXβXf = rXG(f)βY . Clearly P is functorial,
as

P (f)P (g) = 〈lXF (f), rXG(f)〉〈lY F (g), rYG(g)〉
= 〈lXF (f)F (g), rXG(f)G(f)〉
= 〈lXF (fg), rXG(fg)〉
= P (fg)

and
P (1) = 〈lXF (1), rXF (1)〉 = 〈lX , rX〉 = 1.

As F and G preserve restrictions, then

P (f ) = 〈lXF (f ), rXG(f )〉
= 〈lXF (f) , rXG(f) 〉
= lXF (f) rXG(f) 〈lX , rX〉
= lXF (f) rXG(f)

= 〈lXF (f), rXG(f)〉
= P (f)
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so P is a retraction functor.

(ii) If F and G preserves joins, then so does P , as restriction pullbacks are easily seen to preserve
joins.

(iii) If lX and rX are total, we first show that rXF (f) = lXG(f) :

rXG(f) = rXG(f)βY since β is total,

= rXβXH(f) by naturality of β,

= lXαXH(f)

= rXF (f)αY by naturality of α,

= rXF (f) since α is total.

Then l is natural since

P (f)lY = 〈lXF (f), rXG(f)〉lY = rXG(f) lXF (f) = lXF (f),

and similarly for r.

2

We now check that Mf lifts the required pullbacks.

Proposition 6.24 Suppose we have all the conditions of the previous proposition, and X has joins.
Then for any object M = (Ui, φij) in Mf(X), the diagram

Mf(X)(F )(M) Mf(X)(H)(M)//

Mf(X)(P )(M)

Mf(X)(F )(M)
��

Mf(X)(P )(M) Mf(X)(G)(M)//Mf(X)(G)(M)

Mf(X)(H)(M)
��

is also a restriction pullback.

Proof: The diagram commutes since Mf is a functor. Thus, it suffices to show the universal
property. Suppose we have

(PUi, Pφij) (GUi, Gφij)
Mf(r)

//(PUi, Pφij)

(FUi, Fφij)

Mf(l)

��
(FUi, Fφij) HUi, Hφij

Mf(α) //

(GUi, Gφij)

HUi, Hφij

Mf(α)

��

(Vm, ψmn)

(GUi, Gφij)

B

--ZZZZZZZZZZZZZZZZZZZZZZZZZZZZ(Vm, ψmn)

(FUi, Fφij)

A

��???????????????????

so that AMf(α) ^ BMf(β). Now, compatability implies pointwise compatibility, so we have

AMf(α)mk ^ BMf(β)mk
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for each m and k. By the lemma about Mf(α), this gives

Amkαk ^ Bmkαk.

Then by the universal property of the pullback in Y, we know there exists a map Vm
〈Amk,Bmk〉 //PUk.

We claim these maps together form a manifold map. For ATM2,

ψmn〈Ank, Bnk〉 = 〈ψmnAnk, ψmnBnk〉 ≤ 〈Amk, Bmk〉,

and ATM1 is similar. For ATM3,

〈Amk, Bmk〉Pφkj = 〈Amk, Bmk〉〈lkF (φkj , rkG(φkh)〉 by definition of P ,

= 〈AmkF (φkj), BmkG(φkj)〉
= 〈Amk Amj , Bmk Bmj〉 by ATM3 for A and B,

= Amk Bmk 〈Amj , Bmj〉
= 〈Amk, Bmk〉 〈Amj , Bmj〉

so it is a manifold map.
For its restriction, recall that compatibility of AMf(α) and BMf(β) also implies that we have∨

i

(AMf(α))mi (BMf(β))mj =
∨
i

(BMf(β))mi (AMf(α))mj

that is, ∨
i

AmiαiBmjαj =
∨
i

BmiβiAmjβj ,

but since α and β are total, this reduces to∨
i

AmiBmj =
∨
i

BmiAmj .

Now, we want to show that 〈A,B〉mn = (AB )mn. Indeed, consider

(AB )mn =
∨
i

Ami
∨
j

Bmj ψmn by definition of manifold map restriction,

=
∨
i

Ami
∨
j

Bmj Ami ψmn

=
∨
i

Ami
∨
j

Amj Bmi ψmn by the above calculation,

=
∨
i

AmiBmi ψmn

=
∨
i

〈Ami, Bmi〉ψmn

= 〈A,B〉mn

as required.
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Finally, suppose that we have some manifold map (Vm, ψmn)
C // (PUi, Pφij) such that

CMf(l) ≤ A and CMf(r) ≤ B.

This gives, for each m and i,
Cmili ≤ Ami and Cmiri ≤ Bmi,

so that by the universal property of the pullback in Y, we have

Cmi ≤ 〈Ami, Bmi〉

so that C ≤ 〈A,B〉. 2

Thus, we have:

Corollary 6.25 If (X, T ) is join restriction category with restriction tangent structure, then the
pair (Mf(X),Mf(T)) is also.

In particular:

Corollary 6.26 If X is a join differential restriction category, then the total maps of (Mf(X),Mf(T ))
form a category with tangent structure.

For example, applied to the join differential restriction category of smooth maps between Carte-
sian spaces, this gives the classical category of finite-dimensional smooth manifolds. This is dis-
cussed further in the next section. In particular we briefly show that the tangent functor arrived
at through the above process coincides with the usual definition of the tangent bundle.

It is also useful to note that the result above actually applies to any differential restriction
category: if X does not have joins but has differential structure, then one can always join complete
X without destroying the differential structure (see [Cockett et al. 2011], section 5)

6.4 Comparison with other tangent bundle functor definitions

Finally, we give a brief comparison of the tangent bundle obtained, as above, through the manifold
completion with the definitions of the tangent bundle of a smooth manifold often given in the
literature.

Let M be a smooth manifold. The more geometric of the two standard definitions of the tangent
bundle is the following:

Definition 6.27 (Kinematic tangent bundle) If V is a vector space, a kinematic tangent vector
is an equivalence class of smooth curves f : R // V with f ∼ g if f(0) = g(0) and f ′(0) = g′(0).
The set of all kinematic tangent vectors forms the kinematic tangent bundle KM . Given a
smooth map f : X // Y , one defines Kf : KX //KY by Kf(c) := cf .

The idea is that a tangent vector at a is an infinitesimally small curve through a8.
However, this geometric definition is equivalent to the “local product” definition of the tangent

structure of a differential restriction category that we gave above, which here we notate by T .

8Of course, synthetic differential geometry formalizes this by including infinitesimal spaces D, and defining a
tangent vector to be a map f : D //X.
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Proposition 6.28 In the category of smooth maps between Cartesian spaces, K = T .

Proof: Given a kinematic tangent vector f : R // X, we define a pair of elements of X by
(D(f)(1, 0), f(0)). Given a pair of elements (x, a) of M , we define a kinematic tangent vector f by
f(r) := f(0) + r · x. It is clear that these two definitions are well-defined inverses of one another.

For the action on maps, the local product definition gives us that the result of applying T (f)
to c is

〈c′(0), c(0)〉〈Df, π1f〉

while the kinematic definition gives us

〈(cf)′(0), f(c(0))〉

(where g′(x) = Df(1, x)). These two definitions then agree by the chain rule. 2

Since these definitions agree on the base category, they also agree on the categories of manifolds,
and hence we have:

Corollary 6.29 In the category of smooth manifolds, K = T .

Another standard bundle functor is the “operational” tangent bundle. For a smooth manifold
M , let C∞(M) denote the vector field of smooth maps from M to R.

Definition 6.30 Let x be a point in a smooth manifold M . An operational tangent vector at
x is a linear map α : C∞(M) // R which satisfies

α(fg) = α(f) · g(x) + α(g) · f(x).

(These are known as linear derivations). The set of all operational tangent vectors over all points
of M forms the operational tangent bundle DM . Given a smooth map f : M //N , one defines
D(f)(α) as C∞(f)α.

This “functional analysis” version of the tangent bundle is popular because it is typically easier
to manipulate. Unfortunately, for the level of abstraction at which we are working this is a prob-
lematic definition. First, it requires a base object R, and so is impossible to define in a general
differential restriction category. However, even when this object exists, as, for example, in the
category of smooth maps between convenient vector spaces, this definition is not equivalent to the
kinematic definition. There is an obvious map from KM to DM : given a curve c, one can define

αc(f) := cf ′(0)

which is easily checked to be a linear derivation. However, in general this map is only invertible
under special circumstances: for more information, see 28.7 of [Kriegl and Michor 1997]. Further-
more, D does not preserve all products (see the remarks after 28.16 in [Kriegl and Michor 1997]),
so that it is not an example of Cartesian differential structure.

Thus, the kinematic tangent bundle definition seems to be the appropriate definition for gen-
eralizations of the category of smooth manifolds. However, it would be interesting to know more
precisely what role the operational tangent bundle plays.

81



7 Concluding remarks

We initially developed our ideas on tangent structure in complete ignorance of Rosický’s work. Our
motivation was to explain the residual differential structure which is inherited by the manifolds
of a differential restriction category. We are in debt to Anders Kock for drawing our attention
to Rosický’s paper: we had been struggling with the axiomatization of tangent structure. The
definition of tangent structure we had arrived at was close to Rosický’s, but significantly we had
not demanded all the coherence conditions. In particular, while we had become aware that the
universality of the vertical lift implied that tangent spaces had differential structure, we did not
realize the importance of this universality in other contexts, and had not included it in our ax-
iomatization. Reading Rosický’s paper, however, immediately put beyond doubt the importance
of this condition. His paper also clarified the relationship to synthetic differential geometry, which
had been quite unclear to us.

With this changed perspective, we decided that it would be valuable to provide a paper which
gave a broader viewpoint on Rosický’s axiomatization. While Rosický’s paper describes with mas-
terful brevity the basic consequences of the theory, it left to the reader the details of most of the
proofs. Here we have filled in many of these details.

In particular, this led to us developing further some of the aspects of the relationship between
synthetic differential geometry and representable tangent structure. Rosický initiated these ideas,
and we simply pursued them to give a tighter correspondence. The perspective of representable
tangent structure strongly suggests that infinitesimal objects (rather than the rig of line type)
be regarded as primary. This is hardly a new idea, as it can certainly be found in Lawvere’s
writings (see, for example [Lawvere 2011]). Here we did manage to suggest a way of formalizing a
“synthetic model” in a manner which relies only on the structure of infinitesimal objects. However,
our formalism had a very limited aim: namely to support the basic requirements we had identified
for having an infinitesimal object. It did not address the larger question of characterizing at
this level of abstraction the more general use of Weil objects (or algebras) in these settings (see
[Nishimura 2012]) and in this regard there is still work to be done.

For an infinitesimal object we identified three potentially different line objects. However, we
did not exhibit any example in which these line objects are distinct. Our feeling is that there
should be such models and that it would be nice to have separating examples. Furthermore in our
synthetic models we did not suppose D(n) ⊆ D(1)n, but again we did not exhibit any examples
where these maps are not monic. Lastly, we supposed that the infinitesimal object need not be all
the 2-nilpotent elements of the rig, but we did not provide an example of when it is not. Thus,
there remain many open issues with these models.

A contribution of this work has been to connect tangent structure to differential structure in
a manner which was simply not possible when Rosický wrote his paper. The theory of differential
categories was partly motivated from computer science and combinatorics. It is to be hoped that by
revealing structural relationships between these systems and those used in more traditional areas of
mathematics – e.g. differential geometry – that this will stimulate further synergistic developments.

Our original motivation for this work was to explore the effect of applying the manifold con-
struction to a differential restriction category. Indeed, that this construction does produces tangent
structure is a contribution of this work. As this construction covers all the standard altas-based
manifold constructions, it brings into the reach of this theory the majority of “standard” exam-
ples from differential geometry. Significantly, it also covers a wide variety of examples which have
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not been explored. In particular, additive differential manifolds are still a completely unexplored
subject.

Using Rosický’s axiomatization as a basis we have been able to collect under one axiomatization
a wide variety of differential structures encompassing almost all the major approaches to differential
geometry. There are many more examples which might yet be collected under this umbrella – and,
undoubtedly, there are many which do not fit. Both will be useful to circumscribe the reach of
these ideas.
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