An introduction to category theory

Math/CS Faculty Talk
Geoff Cruttwell

$$
\pi \text { day }+1,2013
$$

Abstraction (level 1)

Mathematics often makes abstractions to gain a better understanding of some particular problem.

Abstraction (level 1)

Mathematics often makes abstractions to gain a better understanding of some particular problem.
Mathematics used to be written like this:
When the cube and things together are equal to some discrete number, find two other numbers differing in this one. Then...their product should always be equal exactly to the cube of a third of the things. The remainder then as a general rule of their cube roots subtracted will be equal to your principal thing.

Abstraction (level 1)

Mathematics often makes abstractions to gain a better understanding of some particular problem.
Mathematics used to be written like this:
When the cube and things together are equal to some discrete number, find two other numbers differing in this one. Then...their product should always be equal exactly to the cube of a third of the things. The remainder then as a general rule of their cube roots subtracted will be equal to your principal thing.

So people invented variables to express the above as

$$
\begin{aligned}
& \text { To solve } x^{3}+c x=d \text {, find } u, v \text { such that } u-v=d \text { and } \\
& u v=(c / 3)^{3} \text {. Then } x=\sqrt[3]{u}-\sqrt[3]{v} \text {. }
\end{aligned}
$$

(From "How to read historical mathematics". pg. 1).

Abstraction (level 2)

As an example of the second level of abstraction, instead of considering "vectors" which we can "extend by some number", or "follow one by the other" one works with an abstract vector space:

Abstraction (level 2)

As an example of the second level of abstraction, instead of considering "vectors" which we can "extend by some number", or "follow one by the other" one works with an abstract vector space:

Definition

A real vector space consists of a set of vectors V, with an operation which takes any two vectors $v, w \in V$ and produces a vector $v+w \in V$, and given any real number α produces a vector $\alpha \cdot v \in V$. (These operations then satisfy certain axioms).

Abstraction (level 2 ctd.)

There are many more examples of this level of abstraction: taking objects which similar properties and making abstract definitions out of them. A lot of undergraduate mathematics is about learning these strucures!

Abstraction (level 2 ctd.)

There are many more examples of this level of abstraction: taking objects which similar properties and making abstract definitions out of them. A lot of undergraduate mathematics is about learning these strucures!

- "Symmetries" of some object: a group.
- A set with two related operations: a ring.
- Some sort of grid connected by lines: a graph.
- A set with a notion of "distance": a metric space.
- A set with a notion of "open subset" : a topological space.

From level 2 to level 3...

People started noticing that there were similarities between these different mathematical structures!

- Many definitions looked similar (for example, the product of two objects).
- Many results were proven in similar ways.
- Again, people could say in vague terms why they were the same, but not precisely.
What is missing is a language for mathematical structures themselves.

Morphisms: the common thread

In each case, there was a notion of "morphism" of these structures.

- vector spaces have linear maps,
- groups have group homomorphisms,
- rings have ring homomorphisms,
- topological spaces have continuous maps.

Abstraction level 3: Categories

A category is a collection of "objects" and "morphisms" with two simple operations.

Abstraction level 3: Categories

A category is a collection of "objects" and "morphisms" with two simple operations.

Definition

A category \mathbf{C} consists of a collection of objects X, Y, \ldots, and a collection of morphisms f, g, \ldots, so that

- each morphism has a specified domain object and codomain object (if X and Y are the domain and codomain of f, write $X \xrightarrow{f} Y$;

Abstraction level 3: Categories

A category is a collection of "objects" and "morphisms" with two simple operations.

Definition

A category \mathbf{C} consists of a collection of objects X, Y, \ldots, and a collection of morphisms f, g, \ldots, so that

- each morphism has a specified domain object and codomain object (if X and Y are the domain and codomain of f, write $X \xrightarrow{f} Y$;
- for each object X, there is a specified morphism $X \xrightarrow{1_{X}} X$ (called the "identity" of X);

Abstraction level 3: Categories

A category is a collection of "objects" and "morphisms" with two simple operations.

Definition

A category \mathbf{C} consists of a collection of objects X, Y, \ldots, and a collection of morphisms f, g, \ldots, so that

- each morphism has a specified domain object and codomain object (if X and Y are the domain and codomain of f, write $X \xrightarrow{f} Y$;
- for each object X, there is a specified morphism $X \xrightarrow{1_{X}} X$ (called the "identity" of X);
- for any two morphisms $X \xrightarrow{f} Y \xrightarrow{g} Z$, there is a specified morphism $X \xrightarrow{\text { gf }} Y$ (called the "composite" of f and g);

Abstraction level 3: Categories

A category is a collection of "objects" and "morphisms" with two simple operations.

Definition

A category \mathbf{C} consists of a collection of objects X, Y, \ldots, and a collection of morphisms f, g, \ldots, so that

- each morphism has a specified domain object and codomain object (if X and Y are the domain and codomain of f, write $X \xrightarrow{f} Y$;
- for each object X, there is a specified morphism $X \xrightarrow{1_{X}} X$ (called the "identity" of X);
- for any two morphisms $X \xrightarrow{f} Y \xrightarrow{g} Z$, there is a specified morphism $X \xrightarrow{\text { gf }} Y$ (called the "composite" of f and g);
- such that $f 1_{X}=f=1_{Y} f$ and $f(g h)=(f g) h$ (composition is unital and associative).

Categories: examples

- sets and functions,
- vector spaces and linear maps,
- groups and group homomorphisms,
- rings and ring homomorphisms,
- any graph G gives a category, where the objects are the vertices of G, and a morphism from v to v^{\prime} is a path from v to v^{\prime} (allowing paths of length 0),
- there is a category where the objects are natural numbers, with a single morphism from n to m if n divides m.

Usefulness?

But there is a big question: what can you do with an arbitrary category?

Products

We can express the product of two sets without referring to elements, and generalize this to categories:

Products

We can express the product of two sets without referring to elements, and generalize this to categories:

Definition

Let X and Y be objects in a category \mathbf{C}. Say that an object P is the product of X and Y if
(1) there are morphisms $P \xrightarrow{p_{0}} X, P \xrightarrow{p_{1}} Y$,

Products

We can express the product of two sets without referring to elements, and generalize this to categories:

Definition

Let X and Y be objects in a category \mathbf{C}. Say that an object P is the product of X and Y if
(1) there are morphisms $P \xrightarrow{p_{0}} X, P \xrightarrow{p_{1}} Y$,
(2) which are "the best possible such morphisms": for any other object Z with morphisms $Z \xrightarrow{f} X, Z \xrightarrow{g} Y$, there is a unique morphism $Z \xrightarrow{h} P$ so that $p_{0} h=f, p_{1} h=g$:

Product examples

- in sets: the product of two sets,
- in vector spaces: the product of two vector spaces,
- in groups: the product of two groups,
- in the divisibility category: the product of n and m is their $\operatorname{gcd}(!)$,
- products need not exist in a graph viewed as a category.

Products

Definition

Let X and Y be objects in a category \mathbf{C}. Say that an object P is the product of X and Y if
(1) there are morphisms $P \xrightarrow{p_{0}} X, P \xrightarrow{p_{1}} Y$,
(2) which are "the best possible such morphisms": for any other object Z with morphisms $Z \xrightarrow{f} X, Z \xrightarrow{g} Y$, there is a unique morphism $Z \xrightarrow{h} P$ so that $p_{0} h=f, p_{1} h=g$:

CoProducts

Definition

Let X and Y be objects in a category \mathbf{C}. Say that an object Q is the coproduct of X and Y if
(1) there are morphisms $Q \stackrel{q_{0}}{\longleftarrow} X, Q \stackrel{q_{1}}{\longleftarrow} Y$,
(2) which are "the best possible such morphisms": for any other object Z with morphisms $Z \stackrel{f}{\longleftarrow} X, Z \stackrel{g}{\longleftarrow} Y$, there is a unique morphism $Z \stackrel{h}{\longleftarrow} Q$ so that $h q_{0}=f, h q_{1}=g$:

Coproduct examples

- in sets: the disjoint union of two sets,
- in vector spaces: coproduct is the same as the product(!)
- in abelian groups: coproduct is the same as the product(!)
- in groups: coproduct is the free product,
- in the divisibility category: the coproduct of n and m is their lcm(!),
- coproducts need not exist in a graph viewed as a category.

Equalizers and coequalizers

- An important notion in many contexts is the "solution set": determining a subset on which two things are equal, eg., $\left\{x \in \mathbb{R}: x^{2}=2 x+3\right\}$
- Another important notion is "quotient sets" : given an equivalence relation \cong on a set X, considering the set X / \cong.
- These are also dual: the first is known as the equalizer, the second the coequalizer.

Toposes

- A topos is a category with all products, coproducts, equalizers, coequalizers, and has "power objects" (similar to power sets).

Toposes

- A topos is a category with all products, coproducts, equalizers, coequalizers, and has "power objects" (similar to power sets).
- These categories are so similar to sets, for most purposes we can pretend they are sets.
- That is, any statement we can make or prove about sets, we can make or prove in any topos (assuming we don't use proof by contradiction or the axiom of choice).

Toposes

- A topos is a category with all products, coproducts, equalizers, coequalizers, and has "power objects" (similar to power sets).
- These categories are so similar to sets, for most purposes we can pretend they are sets.
- That is, any statement we can make or prove about sets, we can make or prove in any topos (assuming we don't use proof by contradiction or the axiom of choice).
- There are toposes where all functions are continuous, or smooth, or computable. A brave new world of mathematics!

