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Overview

In many supervised/machine learning algorithms, the derivative plays a
fundamental role.

These algorithms usually use gradient descent to get closer to the
true value of a function

If we want to understand what’s happening in machine learning
abstractly (ie., categorically), it’s helpful to have an abstract
(categorical) formulation of differentiation

In this talk I’ll begin by discussing one type of categorical
differentiation: Cartesian differential categories

We’ll then look at a recent variant of this called Cartesian reverse
differential categories

Towards the end of the talk, we’ll see why these are useful in
developing abstract algorithms that “learn”

One can see this talk as a prelude to Bruno Gavranovic and Paul
Wilson’s talk at ACT next week!
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What is the type of the derivative?

Consider the category smooth of Euclidean spaces (Rn’s) and smooth
maps between them

Each map f : Rn −→ Rm in this category has its associated Jacobian,
which at a point x ∈ Rn gives an n ×m matrix, ie., a linear map
from Rn −→ Rm

One can think of this operation as a map

J[f ] : Rn −→ Lin[Rn,Rm]

Alternatively, by uncurrying, we can think of it as a map

D[f ] : Rn × Rn −→ Rm

(the directional derivative)
For example, if f : R2 −→ R is defined by f (x1, x2) = x21 x2 + sin(x2),

D[f ](x1, x2, x
′
1, x

′
2) = (2x1x2) · x ′1 + (x21 + cos(x2)) · x ′2

Thus, in this category, for any map f : A −→ B, we have an
associated map

D[f ] : A× A −→ B

satisfying certain properties
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Cartesian left additive categories

To talk about some of the properties of differentiation, we will need our
base category to have a bit of pre-existing structure:

A Cartesian category is a category with finite products

A left additive category is a category X in which each homset
X(A,B) has the structure of a commutative monoid, and addition is
preserved by post-composition:

f ; (g + h) = f ; g + f ; h1 and f ; 0 = 0

A map f in a left additive category is said to be additive if it
preserves addition:

(g + h); f = g ; f + h; f and 0; f = 0

A Cartesian left additive category is a category which is Cartesian
and left additive and these structure are compatible, eg., all
projections are additive

1We are using ; to represent diagrammatic order of composition
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Cartesian differential categories

Definition (Blute/Cockett/Seely 2009)

A Cartesian differential category consists of a Cartesian left additive
category X in which for every map f : A −→ B there is an associated map

D[f ] : A× A −→ B

satisfying seven axioms:

[CD.1] D[0] = 0 and D[f + g ] = D[f ] + D[g ]

[CD.2] ⟨x , 0⟩;D[f ] = 0 and

⟨x , v1 + v2⟩;D[f ] = ⟨x , v1⟩;D[f ] + ⟨x , v2⟩;D[f ]

[CD.3] D[1] = π1, D[π0] = π1;π0, D[π1] = π1;π1

[CD.4] D[⟨f , g⟩] = ⟨D[f ],D[g ]⟩
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Cartesian differential categories continued

Definition

[CD.5] the chain rule: for composable maps f , g ,

D[f ; g ] = ⟨π0; f ,D[f ]⟩;D[g ]

[CD.6] linearity of the derivative:

⟨x , v , 0,w⟩D[D[f ]] = ⟨x ,w⟩D[f ]

[CD.7] symmetry of mixed partial derivatives:

⟨x , v1, v2,w⟩D[D[f ]] = ⟨x , v2, v2,w⟩D[D[f ]]
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Examples

Examples of Cartesian differential categories (CDCs):

smooth

Polynomial functions between Rk ’s

Zn polynomials between finite Zk
n ’s

Convenient vector spaces (a form of infinite-dimensional calculus)

Abelian functor calculus2

CDCs are related to many other categorical theories of differentiation:

The Euclidean R-modules in a model of synthetic differential
geometry form a CDC

A model of the differential λ-calculus is a CDC

The coKleisli category of a differential category is a CDC

A Fermat theory is a CDC

2See “Directional derivatives and higher order chain rules for abelian functor
calculus” by BJORT
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Linearity in a CDC

Definition

A map f : A −→ B in a CDC is said to be linear if

D[f ] = π1; f .

Eg., in smooth, this agrees with the ordinary (vector space) notion of
linear.

Definition

A map f : A× B −→ C in a CDC is linear in its second variable if

⟨π0, π1, 0, π2⟩;D[f ] = ⟨π0, π2⟩; f

[CD.6] is equivalent to asking that for any f : A −→ B,

D[f ] : A× A −→ B

is linear in its second variable.
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The simple fibration and CDCs

Definition

If X is a Cartesian category, the simple fibration over X, written as
X[X], is the category with objects pairs (A,A′) and maps pairs
(f , f ′) : (A,A′) −→ (B,B ′) where

f : A −→ B and f ′ : A× A′ −→ B ′.

The composite of (f , f ′) with (g , g ′) is given by f ; g with

⟨π0; f , f
′⟩; g ′.

Definition

If X is a Cartesian differential category, Lin[X] is the subcategory of the
simple fibration consisting of maps (f , f ′) : (A,A′) −→ (B,B ′) such that
f ′ : A× A′ −→ B ′ is linear in its second variable.

There are forgetful functors U : X[X] −→ X and UL : Lin[X] −→ X which
are both fibrations.



Introduction Cartesian differential categories Cartesian reverse differential categories CRDCs and learning Conclusion

The simple fibration and CDCs continued

Lemma

If X is a CDC, X has a section D of the fibration UL : Lin[X] −→ X given
by sending

A 7→ (A,A)

and
(f : A −→ B) 7→ (f ,D[f ]) : (A,A) −→ (B,B).

In fact, functoriality of this section is precisely the chain rule!
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Tangent categories

Note that CDCs are not sufficient for differential geometry: for example,
the category of smooth manifolds is not a CDC.

In the category of smooth manifolds, every object M has an
associated “tangent bundle” TM
This operation is functorial: given any map f : M −→ N, there is an
associated map

T (f ) : TM −→ TN

which is the analogue of the derivative between Euclidean spaces
This structure is abstracted by tangent categories which involve
asking for a category X with an endofunctor T : X −→ X equipped
with various natural transformations which the tangent bundle on
smooth manifolds possesses
CDCs are essentially tangent categories in which every tangent
bundle is trivial, ie., for each A

T (A) ∼= A× A,

one recovers D[f ] from this as the composite

A× A ∼= T (A)
T (f )−−−−→ T (B) ∼= B × B

π1−−→ B
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Reverse differentiation

This is all good...but most machine learning algorithms use the so-called
“reverse” mode of differentiation!

Recall that the Jacobian of f : Rn −→ Rm at a point of Rn gives a
linear map from Rn to Rm, and we get a map

D[f ] : Rn × Rn −→ Rm.

Reverse differentiation uses the transpose of the Jacobian, which is a
linear map Rm −→ Rn, and this gives a map

R[f ] : Rn × Rm −→ Rn.

Note the difference in type from D[f ]!

If f : R2 −→ R is defined by f (x1, x2) = x21 x2 + sin(x2),

D[f ](x1, x2, x
′
1, x

′
2) = (2x1x2) · x ′1 + (x21 + cos(x2)) · x ′2

while

R[f ](x1, x2, y
′) = [(2x1x2) · y ′, (x21 + cos(x2)) · y ′]
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CDCs vs. RDCs

Thus,from a map f : A −→ B, the “forward” derivative is a map of
type

D[f ] : A× A −→ B

while the reverse derivative is a map of type

R[f ] : A× B −→ A.

There is no reason why a CDC should have a reverse derivative.

We could get one in a similar way to how the reverse derivative for
smooth is defined: ask for a “dagger structure on linear maps” and
define R[f ] as the dagger of D[f ] (in its second variable)

An alternative is to axiomatize the resulting structure on its own,
leading to Cartesian reverse differential categories

We’ll look at each of these possibilities in turn
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The dual of the simple fibration

Any fibration has an associated dual fibration given by taking the
opposite category of each fibre.

Definition

If X is a Cartesian category, the dual of the simple fibration (also
known as the category of lenses!) is the category whose objects are pairs
(A,A′) and maps (f , f ∗) : (A,A′) −→ (B,B ′) consist of a pair of maps

f : A −→ B, f ∗ : A× B ′ −→ A′

with the composite of (f , f ∗) with (g , g∗) given by f ; g with

⟨π0, ⟨π0; f , π1⟩; g∗⟩f ∗.

The dual of the linear fibration, Lin∗[X] is the same as above, but
requires that f ∗ be linear in its second variable.



Introduction Cartesian differential categories Cartesian reverse differential categories CRDCs and learning Conclusion

Contextual linear dagger

Definition

If X is a CDC, say it has a contextual linear dagger if there is an
identity-on-objects fibration functor

()† : Lin[X] −→ Lin∗[X]

which when composed “with itself” gives the identity.

For example, smooth has such structure given by taking the transpose.
The effect of having a contextual linear dagger is that given a map

f : A× A′ −→ B ′

which is linear in its second variable, one gets

f † : A× B ′ −→ A′

also linear in its second variable, and (f †)† = f .
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Contextual linear dagger ctd.

If X is a CDC with a contextual linear dagger, then every map

f : A −→ B

has an associated map
D[f ] : A× A −→ B

which is linear in its second variable, and so also has a map

D[f ]† =: R[f ] : A× B −→ A

which is linear in its second variable, and can be thought of as the
“reverse derivative” of f .

Question: what properties does this operation satisfy?
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CRDC definition

Definition (Cockett et. al. 2020)

A Cartesian reverse differential category (CRDC) consists of a left
additive category X, which has, for every map f : A −→ B, a map

R[f ] : A× B −→ A

satisfying seven axioms:

[RD.1] R[0] = 0 and R[f + g ] = R[f ] + R[g ]

[RD.2] ⟨x , 0⟩;R[f ] = 0 and

⟨x , v1 + v2⟩;R[f ] = ⟨x , v1⟩;R[f ] + ⟨x , v2⟩;R[f ]

[RD.3] R[1] = π1, R[π0] = π1ι0, R[π1] = π1ι1 where ι0 = ⟨1, 0⟩ and
ι1 = ⟨0, 1⟩
[RD.4]

R[⟨f , g⟩] = (1× π0);R[f ] + (1× π1)R[g ]
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CRDC definition ctd.

Definition

[RD.5] reverse chain rule:

R[f ; g ] = ⟨π0, ⟨π0; f , π1⟩;R[g ]⟩;R[f ]

[RD.6] linearity of the derivative:

(1× π0, 0× π1); (ι0 × 1);R[R[R[f ]]]π1 = (1× π1);R[f ]

[RD.7] symmetry of mixed partials:

(ι0 × 1; )R[R[ι0 × 1);R[R[f ]];π1]];π1 =

ex; (ι0 × 1);R[R[(ι0 × 1);R[R[f ]];π1]];π1

where ex exchanges the middle two terms.

Just as a CDC gives a section of the simple fibration, so a CRDC gives a
section of the dual of the simple fibration (ie., the category of lenses).
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Examples

Any CDC with a contextual linear dagger is a CRDC. Examples:

smooth

Polynomial functions between Rn’s

Zn polynomials between Zk
n ’s

We’re working on adding more examples.
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The CDC hidden inside a CRDC

To go from a CDC to a CRDC, one needs dagger structure. But one
doesn’t need any additional structure to go from a CRDC to a CDC!

Suppose X is a CRDC, and let f : A −→ B, so that

R[f ] : A× B −→ A.

Then
R[R[f ]] : A× B × A −→ A× B

And we can extract a forward derivative from this by inserting 0’s
and projecting: define D[f ] : A× A −→ B by

D[f ] = ⟨π0, 0, π1⟩;R[R[f ];π0.

This satisfies all the rules to have a CDC!

(This “trick” is somewhat well-known in the automatic differentiation
community.)
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Characterization of CRDCs

In a similar way one can show that the resulting CDC has a contextual
linear dagger (again by using the reverse derivative to define the dagger).
Then we get

Theorem (Cockett et. al. 2020)

The following are equivalent:

A CDC with a contextual linear dagger

A CRDC
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Basics of supervised learning

In supervised learning, one wants to learn some objective function

o : A −→ B

To do this, one fixes a parameter space P and builds a function

f : P × A −→ B

(the “neural network”)

One hopes that for some value of p, f (p,−) : A −→ B will closely
approximate o.

One starts with some value p0, and then performs some iterative
process to get new values p1, p2, . . ..

The iterative process often involves some training data: values of
the function that one knows bi = o(ai )
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The reverse derivative and supervised learning

The reverse derivative of the network f is a key component in
gradient-based learning algorithms.

If one has f : P × A −→ B, then

R[f ] : P × A× B −→ P × A

Note that this seems like exactly the right type to do learning!

One can feed into this function the current parameter p and the
current training data pair (ai , bi ) and get back a new value of P
(and a value of A, which is related to so-called “deep dreaming”)

In fact, it’s a little bit more complicated than that, as the R[f ]
expects to see a change in B and gives back a change in P...

This is where gradient descent and the loss function come into play

But because of its bidirectional type, the reverse derivative of f
plays a key role in these algorithms



Introduction Cartesian differential categories Cartesian reverse differential categories CRDCs and learning Conclusion

CRDCs and supervised learning

Bruno Gavranovic and Paul Wilson will talk at ACT next week about
more of these details, showing how to talk about gradient-based
supervised learning algorithms in any CRDC. The framework is quite
general:

It allows for different types of gradient descent algorithms such as
momentum and Adagrad

It allows for different types of loss functions

It allows one to change the base category to any CRDC,
encompassing learning on Boolean circuits developed by Wilson and
Zanasi
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Conclusions

CDCs and CRDCs generalize different types of differentiation
operations between Euclidean spaces

They have some interesting theoretical aspects: for example, a
CRDC “contains a CDC inside of it” (but not the converse)

CRDCs turn ordinary maps into lenses, which can “learn”

CRDCs can be used to talk about gradient-based learning algorithms
in different settings

Future work: developing the tangent category analogue of reverse
differentiation, ie., “cotangent categories”. Will hopefully be useful
in understanding learning on manifolds.
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