Proposition 12.7. Any conformal map of D(0,1) onto itself is a fractional linear transformation of the form $T(z) = e^{i\theta} \frac{z - z_0}{1 - \overline{z_0}z}$ mapping z_0 to 0.

13 Rouche's Theorem

Definitions

 $\Delta_{\gamma} \operatorname{\mathbf{arg}} f$ Let f be analytic on A and let $\gamma \in A$ be a closed curve homotopic to a point and passing through no zero of f. Then

$$\Delta_{\gamma} \operatorname{arg} f = 2\pi I(f \circ \gamma, 0)$$

Facts

Proposition 13.1 (Root-Pole Counting Theorem). Let f be analytic on a region A except for poles b_1, \dots, b_m and zeroes a_1, \dots, a_n counted with multiplicity (i.e. u pole of order k, then u repeated in the list k times). Let γ be a closed curve homotopic to a point in A passing through none of a_j or b_l . Then

$$\int_{\gamma} \frac{f'(z)}{f(z)} dz = 2\pi i \left[\sum_{j=1}^{n} I(\gamma, a_j) - \sum_{i=1}^{m} I(\gamma, b_i) \right]$$

Proposition 13.2 (Argument Principle). Let f be analytic on a region A except for poles b_1, \dots, b_m and zeroes a_1, \dots, a_n counted with multiplicity. Let γ be a closed curve homotopic to a point and passing through none of a_j or b_ℓ . Then

$$\Delta_{\gamma} argf = 2\pi \left[\sum_{j=1}^{n} I(\gamma, a_j) - \sum_{i=1}^{m} I(\gamma, b_i) \right]$$

Proposition 13.3 (Rouche's Theorem). (*) Let f and g be analytic on a region A except for a finite number of zeroes and poles in A. Let γ be a closed curve in A homotopic to a point and passing through no zero or pole of f or g. Suppose that on γ , |f(z) - g(z)| < |f(z)|. Then

- (i) $\Delta_{\gamma} arg f = \Delta_{\gamma} arg g$
- (ii) $Z_f P_f = Z_g P_g$ where Z_f is given by $Z_f = \sum_{j=1}^n I(\gamma, a_j)$ for a_j zeroes of f counted with multiplicity, P_f, Z_g, P_g defined similarly.

artisinal mathematics

www.reluctantm.com