The corresponding matrix of this transformation is

1	1	$-\lambda$	λ^2	• • •	$(-\lambda)^{\alpha-1}$
	0	1	-2λ	• • •	:
	0	0	1	•••	÷
	÷	÷	:	÷	:
	0	0	0	• • •	1 /

which is an upper triangular matrix with non-zero determinant, hence invertible. Thus we can write every element in the basis $\{1, \overline{x}, \overline{x}^2, \cdots, \overline{x}^{\alpha-1}\}$ in terms of $\{1, \overline{x} - \lambda, (\overline{x} - \lambda)^2, \cdots, (\overline{x} - \lambda)^{\alpha-1}\}$. Therefore the second set of elements is also a basis for the transformation T.

Apply T to this basis to write the matrix of T with respect to it:

$$T(1) = \overline{x} \cdot 1 = \lambda \cdot 1 + 1 \cdot (\overline{x} - \lambda)$$

$$T(\overline{x} - \lambda) = \overline{x} \cdot (\overline{x} - \lambda) = \lambda \cdot (\overline{x} - \lambda) + 1 \cdot (\overline{x} - \lambda)^{2}$$

$$\vdots$$

$$T((\overline{x} - \lambda)^{\alpha - 1}) = \overline{x} \cdot (\overline{x} - \lambda)^{\alpha - 1} = \lambda \cdot (\overline{x} - \lambda)^{\alpha - 1} + (\overline{x} - \lambda)^{\alpha} = \lambda \cdot (\overline{x} - \lambda)^{\alpha - 1}$$

where the $(\overline{x} - \lambda)^{\alpha}$ vanishes since it is in the quotient. Therefore the matrix is

$$\left(\begin{array}{cccc}\lambda & & & \\ 1 & \lambda & & \\ & \ddots & \ddots & \\ & & 1 & \lambda \\ & & & 1 & \lambda\end{array}\right)$$

where all the blank entries are zeroes.

Definition. The above matrix is called the **Jordan Block matrix of size** k with Eigenvalue λ .

Back to V:

$$V \cong \mathcal{F}[x]_{\langle (x-\lambda_1)^{\alpha_1} \rangle} \oplus \mathcal{F}[x]_{\langle (x-\lambda_2)^{\alpha_2} \rangle} \oplus \cdots \oplus \mathcal{F}[x]_{\langle (x-\lambda_t)^{\alpha_t} \rangle}$$

The new matrix of V with respect to the new bases of each direct summand is a block diagonal matrix as below:

artisinal mathematics

www.reluctantm.com