Does h makes the diagram commute? Take $M \in |\mathbb{Q}|$.

$$(\pi_1 \circ h)(M) = \pi_1(h(M))$$

= $\pi_1(\varphi_1(M), \varphi_2(M))$
= $\varphi_1(M)$

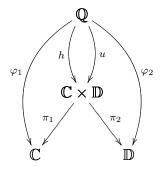
Take $f \in \operatorname{Arr}(\mathbb{Q})$.

$$(\pi_1 \circ h)(f) = \pi_1(h(f))$$

= $\pi_1(\varphi_1(f), \varphi_2(f))$
= $\varphi_1(f)$

Therefore $\pi_1 \circ h = \varphi_1$ since they act the same on objects and arrows, and, similarly, $\pi_2 \circ h = \varphi_2$. Therefore the diagram commutes.

Is h unique? Suppose $\exists u$ with



such that u also makes the diagram commute. Take $M \in |\mathbb{Q}|$. Since $\varphi_i(M) = \pi_i(u(M))$, thinking of π_i 's as the "projections", we can see that $u(M) = (\varphi_1(M), \varphi_2(M))$. But $h(M) = (\varphi_1(M), \varphi_2(M))$, so u and h are equal on all the objects of \mathbb{Q} .

Take $f \in \operatorname{Arr}(\mathbb{Q})$. Since $\varphi_i(f) = \pi_i(u(f))$, thinking of π_i 's as the "projections", we can see that $u(f) = (\varphi_1(f), \varphi_2(f))$. But $h(f) = (\varphi_1(f), \varphi_2(f))$, so u and h are equal on all the arrows of \mathbb{Q} .

Hence u = h and so h is indeed unique.

artisinal mathematics

www.reluctantm.com