Proposition 3.5.5. Let \mathfrak{X} be a normed space and \mathfrak{M} a hyperplane in \mathfrak{X} . Then either \mathfrak{M} is closed or \mathfrak{M} is dense in \mathfrak{X} .

Proof. $\overline{\mathfrak{M}}$ is a subspace of \mathfrak{X} such that $\mathfrak{M} \subseteq \overline{\mathfrak{M}} \subseteq \mathfrak{X}$. Since dim $(\mathfrak{X}_{\mathfrak{M}}) = 1$, we have $Q(\overline{\mathfrak{M}}) = \{0\}$ or $\mathfrak{X}_{\mathfrak{M}}$. If $Q(\overline{\mathfrak{M}}) = \{0\}$, then $\overline{\mathfrak{M}} = \mathfrak{M}$ and so \mathfrak{M} is closed. If $Q(\overline{\mathfrak{M}}) = \mathfrak{X}_{\mathfrak{M}}$ then $\overline{\mathfrak{M}} = \mathfrak{X}$, so \mathfrak{M} is dense in \mathfrak{X} .

Theorem 3.5.6. Let \mathfrak{X} be a normed space. Let $f : \mathfrak{X} \to \mathbb{F}$ be a linear functional. Then f is continuous $\iff \ker(f)$ is closed.

Proof.

Suppose f = 0. Then ker $(f) = \mathfrak{X}$ and we are done. Similarly, if ker $(f) = \mathfrak{X}$, then f = 0, which is continuous and we are done. Thus we can suppose $f \neq 0$.

 \implies Since f is continuous, for any $U \subseteq \mathbb{F}$ open, we have $f^{-1}(U)$ open. Consider $\{0\} \subseteq \mathbb{F}$. This set is closed, so $\mathbb{F} \setminus \{0\}$ open and $f^{-1}(\mathbb{F} \setminus \{0\})$ open. Then

$$f^{-1}(\mathbb{F} \setminus \{0\}) = \{x \in \mathfrak{X} \mid f(x) \in \mathbb{F} \setminus \{0\}\}\$$
$$= \{x \in \mathfrak{X} \mid f(x) \neq 0\}\$$
$$= \{x \in \mathfrak{X} \mid x \notin \ker(f)\}\$$
$$= \mathfrak{X} \setminus \ker(f)$$

Since $f^{-1}(\mathbb{F} \setminus \{0\})$ open, we have $\mathfrak{X} \setminus \ker(f)$ open, so $\ker(f)$ closed.

 \Leftarrow Assume ker(f) closed. Let $Q: \mathfrak{X} \to \mathfrak{X}_{\ker(f)}$ be the canonical quotient map. By Proposition 3.3.4, $||Qx|| \leq ||x||_{\mathfrak{X}}$, and so by Proposition 3.1.10, Q is continuous.

By Proposition 3.5.2, since f a linear functional, $\ker(f)$ a hyperplane. Thus $\dim \left(\mathfrak{X}_{\ker(f)} \right) = 1$ and so $\mathfrak{X}_{\ker(f)} \cong \mathbb{F}$. Let φ denote the isomorphism between these two spaces. Since $\dim \left(\mathfrak{X}_{\ker(f)} \right) = 1$, this space is finite dimensional, and since φ linear, Proposition 3.2.4 gives that φ is continuous.

Thus $\varphi \circ Q : \mathfrak{X} \to \mathbb{F}$ is a continuous, linear functional, with, similar to the proof of Proposition 3.5.2, $\ker(\varphi \circ Q) = \ker(f)$. Moreover, since $f \neq 0$, we have $\varphi \circ Q \neq 0$. By Proposition 3.5.3, there exists some scalar α such that $f = \alpha(\varphi \circ Q)$. Since the scalar multiple of a continuous function is continuous, we have that f is continuous.

artisinal mathematics

www.reluctantm.com