5.2 Fatou's Lemma

Theorem 5.5 (Fatou's Lemma). Suppose (X, \mathcal{C}, μ) a measure space. If $\{f_n\}_{n \in \mathbb{N}}$ is a sequence of non-negative, μ measurable functions, then

$$\int \liminf_{n \in \mathbb{N}} \{f_n\} \ d\mu \le \liminf_{n \in \mathbb{N}} \int f_n \ d\mu$$

Proof. Fix $m \in \mathbb{N}$. Let $g_m(x) = \inf_{n \ge m} \{f_n(x)\}.$

Fix x. Then $g_m(x) \leq f_n(x)$ for $n \geq m$. Therefore

$$\int g_m \, d\mu \leq \int f_n \, d\mu \text{ if } n \geq m$$

Therefore

$$\int g_m \, d\mu \le \inf_{n \ge m} \int f_n \, d\mu \le \sup_{k \ge 1} \left(\inf_{n \ge k} \int f_n \, d\mu \right) = \liminf_{n \in \mathbb{N}} \int f_n \, d\mu$$

Since m was arbitrary, this is true for all m. Therefore

$$\lim_{m \to \infty} \int g_m \ d\mu \le \liminf_{n \in \mathbb{N}} \int f_n \ d\mu$$

Again fix x. Then $g_m(x) \leq g_{m+1}(x)$ by rules of infemum (glb) (since g_{m+1} is taking the infemum over a smaller set). Thus $\{g_m\}_{m\in\mathbb{N}}$ is a monotone increasing sequence. We will now apply Theorem 5.4 (Monotone Convergence Theorem). That is:

$$\lim_{m \to \infty} \int g_m \, d\mu = \int \lim_{m \to \infty} g_m \, d\mu = \int \lim_{m \to \infty} \left(\inf_{n \ge m} \{ f_n(x) \} \right) \, d\mu = \int \liminf_{m \in \mathbb{N}} \{ f_n(x) \} \, d\mu$$
Therefore

$$\int \liminf_{m \in \mathbb{N}} \{f_n(x)\} \ d\mu \le \liminf_{n \in \mathbb{N}} \int f_n \ d\mu$$

Example 5.6. For each $n \in \mathbb{N}$, define $f_n : \mathbb{R} \to \mathbb{R}$ by

$$f_n(x) = \begin{cases} 1 & \text{if } n \le x \le n+1 \\ 0 & \text{else.} \end{cases}$$

artisinal mathematics

www.reluctantm.com