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Recap ...



Message passing logic

Linear actegories are a categorical semantics of the message passing logic.
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Linear actegories

Loosely, a linear actegory is a symmetric monoidal category acting on a linearly
distributive category on the left and the right.

Let (A, ∗, I) be a symmetric monoidal category. A symmetric linear A-actegory consists
the following data:

- A symmetric linearly distributive category (X ,⊗,⊤,⊕,⊥)

- Functors
◦ : A× X → X • : Aop × X → X
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Linear actegories (cont...)

For all A ∈ A, A ◦ − is left adjoint to A • − :

ηX : X → A • (A ◦ X) ϵX : A ◦ (A • X) → X
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Linear actegories: an analogy

The network of roads :: Linearly distributive cats
Market, school, house.. :: Monoidal categories

Vehicles :: Messages
Getting vehicles on to the road? :: Adjoint functors: A ◦ − ⊣ A • − 4



Concurrent process histories and
resource transducers

Chad Nester (2022)



Overview

Motivation:
Capture the movement of resources or informa-
tion across different components of a concurrent
process

Methodology:
- Considers the concurrent process as a resource
theory (strict symmetric monoidal category)
- Augments the string diagrams for symmetric
monoidal categories with corners
- Resources flow between different components
of the systems through the corners
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Single object double category

Start with single object double category

When cells α & β have appropriate matching boundary types, we can have horizontal
composition α|β or vertical composition α

β as defined below.
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Single object double category: Interchange rule

This horizontal & vertical composition needs to satisfy the interchange rule

α

β
|γ
δ
=

α|γ
β|δ
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Monoidal categories

* We shall refer to the horizontal 1-cells as sequential 1-cells, and vertical 1-cells as parallel

1-cells.

Given a single object double category A, we get two strict monoidal categories, S(A),
P(A) as follows:

The tensor product of sequential morphisms given as follows:
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Adding Cornerings

A single object double category is a pro-arrow equipment if for every horizontal 1-cell A,
there exists parallel 1-cells A◦ and A• with A◦ ̸= A• and the following 2-cells:

called ◦-corners and •-corners, respectively, which satisfy the yanking equations:
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Resource theories as strict monoidal categories

This work considers a concurrent process as a resource theory (strict symmetric
monoidal category).

A strict symmetric monoidal category can be interpreted as resource theory 1 -

Objects: Resources

Arrows: Resource transformations that can be implemented without any cost

Composition: Sequential composition of resource transformations

Tensor: Parallel composition of resources and transformations

Unit object: Trivial resource

1Coecke, Spekkens, Fritz (2013) “A mathematical theory of resources”
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A-valued exchanges

Given a resource theory (i.e., a strict SMC) A, the A-valued exchanges A◦• is the free
monoid on the set (ob(A)× {◦, •}), whose elements are denoted by A◦ and A•.

The monoid is NOT commutative.

Intuitively, elements of A◦• of describe a sequence of resources moving between
participants in the exchange.
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Free cornering of A

Given a resource theory (i.e., a strict SMC) A, the free cornering of A is a proarrow
equipment ⌜

⌞A⌝⌟ where,
⌜
⌞A⌝⌟H: are objects of A (Resources)

⌜
⌞A⌝⌟V are elements of A-valued exchange monoid (Sequence of resources on the move)

Generating 2 -cells: the ◦-corners and •-corners along with a vertical cell ⌜⌞f⌝⌟ for each
f : A→ B subject to the equations:
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Free cornering captures concurrency

For ⌜
⌞A⌝⌟, we interpret

1. ⌜
⌞A⌝⌟H = as resources

2. ⌜
⌞A⌝⌟V = A◦• exchange of resources from one party to the other.

3. cells of ⌜
⌞A⌝⌟ as concurrent transformations. Each cell describes a way to

transform the collection of resources given by the top boundary into that given by
the bottom boundary via participating in A-exchanges along the left and right
boundaries.

For example, in the free cornering of our bread category,
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S⌜
⌞A⌝

⌟ is isomorphic to the resource theory

Combining the prior three bread concurrent transformations, we get

Theorem: There is an isomorphism of categories S⌜⌞A⌝⌟ ∼= A.
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P⌜
⌞A⌝

⌟ the category of resource transducers

Consider the category P⌜⌞A⌝⌟ as the category of resource transducers.

Lemma: There are strong monoidal functors (−)◦ : A → P⌜⌞A⌝⌟ and (−)• : Aop → P⌜⌞A⌝⌟
defined respectively on f : A→ B of A by:
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P⌜
⌞A⌝

⌟ is a linear actegory

For the category of resource transducers P⌜⌞A⌝⌟ define -

◦ : A× P⌜⌞A⌝⌟ → P⌜⌞A⌝⌟; f ◦ h = f ◦ ⊗ h

• : Aop × P⌜⌞A⌝⌟ → P⌜⌞A⌝⌟; f • h = f • ⊗ h

for all resource transducer h ∈ P⌜⌞A⌝⌟.

Lemma In H⌜
⌞A⌝⌟, for each A, the functors A ◦ − is left adjoint to A • −:
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P⌜
⌞A⌝

⌟ is a linear actegory (cont...)

We seek families of morphisms ηA,X : X → A • (A ◦ X) and εA,X : A ◦ (A • X) → X in P⌜⌞A⌝⌟
that satisfy the triangle identities. Define ηA,X and ϵA,X , repressively, by

By the yanking equations, the triangles identities hold, as shown below.

Theorem: Let A be a resource theory. Then, P⌜⌞A⌝⌟ is a linear actegory.
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Concurrency, done!

On to quantum ...



Categorical quantum mechanics



Introduction

Linear logic captures the essence of quantum mechanics owing to its
resource-sensitive character.

(In linear logic) Thou shall not duplicate or discard an arbitrary resource ≈ (By no-cloning
theorem)Thou shall not duplicate an arbitrary quantum state

Categorical Quantum Mechanics (CQM) uses this connection to develop a diagrammatic
framework based on the graphical calculus of monoidal categories for describing
quantum mechanics

CQM introduced a dagger functor for monoidal and compact closed which abstracts
unitary evolution of quantum systems.

My thesis introduced dagger isomix and mixed unitary categories as a framework for
reasoning about arbitrary dimensional quantum structures. 18



The LDC Rainbow
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The LDC Rainbow - Quantum
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Dagger monoidal category

In a †-monoidal category, dagger is a contravariant functor:

• Stationary on objects A = A†

• Involution on maps f †† = f

• Coherent with the tensor (f ⊗ g)† = f † ⊗ g†

• The basic natural isomorphisms are unitary:

a−1
⊗ = a†⊗; u−1

⊗ = u†⊗; c−1
⊗ = c†⊗
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Dagger for LDCs

The definition of † : Xop → X cannot be directly imported to LDCs because the dagger
minimally has to flip the tensor products: (A⊗ B)† = A† ⊕ B†.

Why? If dagger is identity-on-objects, then the linear distributor degenerates to
associator:

δR : (A⊕ B)⊗ C → A⊕ (B ⊗ C)
(δR)† : A⊕ (B ⊗ C) → (A⊕ B)⊗ C
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Dagger for LDCs

The dagger for an LDC is a contravariant Frobenius functor which is a linear involutive
equivalence.

A †-LDC is a LDC X with a dagger functor † : Xop → X and the natural isomorphisms:

tensor laxtors: λ⊕ : A† ⊕ B† → (A⊗ B)†

λ⊗ : A† ⊗ B† → (A⊕ B)†

unit laxtors: λ⊤ : ⊤ → ⊥†

λ⊥ : ⊥ → ⊤†

involutor: ι : A→ A††

such that certain coherence conditions hold.
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†-isomix categories

A †-mix category is a †-LDC with m : ⊥ → ⊤ such that:

⊥ m //

λ⊥
��

⊤
λ⊤
��

⊤†
m†
// ⊥†

Lemma 1: The following diagram commutes in a mix †-LDC:

A† ⊗ B† mix //

λ⊗
��

A† ⊕ B†

λ⊕
��

(A⊕ B)†
mix†
// (A⊗ B)†

For a †-mix category, if m is an isomorphism, then X is a †-isomix category.
24



Quantum Message Passing Logic
Research in progress with Robin (2023)



Dagger linear actegory

Recall that a linear actegory is loosely a monoidal category acting on an LDC. A dagger
linear actegory is a dagger monoidal category acting on a dagger isomix category.

A dagger linear actegory is a A-linear actegory (A, ∗, I) is the monoidal category and let
(X,⊗,⊤,⊕,⊥) be the LDC) such that:

- (A, ∗, I) is a †-monoidal category

- (X,⊗,⊤,⊕,⊥) is †-isomix category

- for all A ∈ A, and for all X ∈ X, there exists natural isomorphisms,

(ϕ•)X : A • X† → (A ◦ X)†

(ϕ◦)X : A ◦ X† → (A • X)†

satisfying the following coherences:
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Taking a closer look at the isomorphisms:

- for all A ∈ A, and for all X ∈ X, there exists natural isomorphisms,

(ϕ•)X : A • X † ≃−−→ (A ◦ X)†

(ϕ◦)X : A ◦ X † ≃−−→ (A • X)†

Somehow, the distinction between left and right boundary seems to vanish ... 26



Dagger linear actegory (cont...)

- Interaction of the nat. isos with the involutor (2 coh.)

A ◦ X A◦ι //

ι
��

A ◦ X††

ϕ◦
��

(A ◦ X)††
ϕ†
•

// (A • X†)†

- Interaction of the nat. isos with u• and u◦ (2 coh.)

X† u• //

u†◦ ""

I • X†

ϕ•
��

(I ◦ X)†
27



Dagger linear actegory (cont...)

- Interaction of the nat. isos with a∗• and a∗◦ (2 coh.)

A • (B • X†)
a∗• //

A•ϕ•
��

(A ∗ B) • X†

ϕ•

��

A • (B ◦ X)†

ϕ•
��

(A ◦ (B ◦ X))†
a∗†◦

// ((A ∗ B) ◦ X)†
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Dagger linear actegory (cont...)

- Interaction of the nat. isos with a◦⊗ and a•⊕ (2 coh.)

(A • X†)⊕ Y † a•⊕
//

ϕ•⊕Y†

��

A • (X† ⊕ Y †)

1•λ⊕
��

(A ◦ X)† ⊕ Y †

λ⊕
��

A • (X ⊗ Y )†

ϕ•
��

((A ◦ X)⊗ Y )†
a◦†⊗

// (A ◦ (X ⊗ Y ))†
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Dagger linear actegories (cont...)

Interaction with the nat. trans. d•⊗ and d◦⊕ (2 coh.):

(A • X†)⊗ Y † d•⊗
//

ϕ•⊗1
��

A • (X† ⊗ Y †)

1•λ⊗
��

(A ◦ X)† ⊗ Y †

λ⊗
��

A • (X ⊕ Y )†

ϕ•
��

((A ◦ X)⊕ Y )†
d◦†⊕

// (A ◦ (X ⊕ Y ))†
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Dagger linear actegories (cont...)

Interaction with the nat. trans. d◦• (1 coh.):

B ◦ (A • X†)
dB◦−A•−

//

1◦ϕ•
��

A • (B ◦ X†)

1•ϕ◦
��

B ◦ (A ◦ X)†

ϕ◦
��

A • (B • X)†

ϕ•
��

(B • (A ◦ X))†
(dA◦−B•− )†

// (A ◦ (X ⊕ Y ))†

31



Example

Example of a dagger linear actegory: Mixed unitary categories

What is a mixed unitary category?
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The core of a mix category

The core of a mix category, Core(X) ⊆ X, is the full subcategory determined by objects
U ∈ X for which the natural transformation is also an isomorphism:

U ⊗ A
mxU,A−−−→ U ⊕ A

The core of a mix category is closed to ⊗ and ⊕.

The core of an isomix category contains the monoidal units
⊤ and ⊥.

33



Mixed unitary categories (MUCs)

A φA−→
≃

A†

Unitary
category †-isomix

functor

†-isomix
category

B
B†

Core(C)

X

equivalent to a †-monoidal category

A mixed unitary category, M : U → C, is

†-isomix functor: unitary category → †-isomix category 34



A MUC is a linear actegory

Theorem: A mixed unitary category with unitary duals is a linear actegory.

Proof (Sketch):

Let M : U → C be a mixed unitary category with unitary duals.

For all U ∈ U,
U ◦ C := M(U)⊗ C

U • C := M(U†)⊕ C

We need U to have dagger duals (U ⊣ U†) to get the adjunction U ◦ − ⊣ U • −
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A MUC is a linear actegory (cont...)

for all U ∈ U, we need a family of maps:

ηX : X → U • (U ◦ X) :=?

ϵX : U ◦ (U • X) → X :=?

And have to define the six natural isomorphisms and the three natural transformations:

....
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A MUC is a dagger linear actegory (cont...)

Theorem: A mixed unitary category with unitary duals is a dagger linear actegory.

for all A ∈ A what are the following family of maps?

(ϕ•)X : A • X† → (A ◦ X)† := ?

(ϕ◦)X : A ◦ X† → (A • X)† := ?
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Examples of MUCs

• Every †-monoidal category is a MUC

• FinRel ↪→ FRel: Finite relations embedded into finiteness relations

• Mat(C) ↪→ FMat(C): Complex finite dimensional matrices embedded into finiteness
matrices over a commutative rig R

• FHilb ↪→ ChusI(Vec(C)): Finite-dimensional Hilbert spaces embedded into Chu spaces
over complex vector spaces

• Unitary construction: Given any †-isomix category C one can construct a canonical
MUC, Unitary(C) ↪→ C, by choosing its pre-unitary objects.

Unitary(C):

Objects: Pre-unitary objects (U,α);

Maps: (U,α)
f−→ (V ,β) where U

f−→ V is any map of X. 38



Speculation

How does the definition of dagger linear actegory fit in Chad Nester’s framework?

Read with caution: Hence, what is a ‘dagger proarrow equipment’ for a single object
double category or what is a dagger double category?

Chad notices, for any resource theory A, there exists an contravariant involution

(−)∗ : P⌜⌞A⌝⌟
op → P⌜⌞A⌝⌟

given as follows:
(A◦)∗ = A• (A•)∗ = A◦
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Speculation (cont...)

The involution on P⌜⌞A⌝⌟ allows an contravariant involution (−)∗ to be defined on ⌜
⌞A⌝⌟:

Can we similarly define a dagger involution?

40



For future

* Build a toy model of dagger linear actegories by extending Chad Nester’s framework?

* Describe quantum communication protocols

* Term calculus of quantum message passing logic

* Proof theory of quantum message passing logic

* A curry-Howard Lambek like correspondence

* Programming syntax for this logic
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