

Quantum Message Passing Logic - Day 2

FMCS 2023, Sackville

Priyaa Varshinee Srinivasan

NIST, USA

September 11, 2023

Linear actegories are a categorical semantics of the message passing logic.

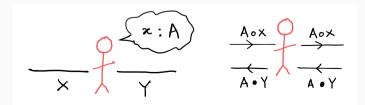
Linear actegories

Loosely, a linear actegory is a symmetric monoidal category acting on a linearly distributive category on the left and the right.

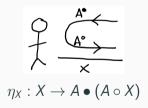
Let (A, *, l) be a symmetric monoidal category. A symmetric linear A-actegory consists the following data:

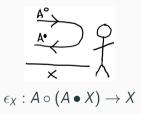
- A symmetric linearly distributive category $(X, \otimes, \top, \oplus, \bot)$
- Functors

$$\circ: \mathbb{A} \times \mathbb{X} \to \mathbb{X} \qquad \bullet: \mathbb{A}^{\mathsf{op}} \times \mathbb{X} \to \mathbb{X}$$



For all $A \in \mathbb{A}$, $A \circ -$ is left adjoint to $A \bullet -$:





Linear actegories: an analogy

The network of roads::Linearly distributive catsMarket, school, house..::Monoidal categoriesVehicles::MessagesGetting vehicles on to the road?::Adjoint functors: $A \circ - \dashv A \bullet -$

Concurrent process histories and resource transducers

Chad Nester (2022)

Overview

Motivation:

Capture the *movement* of resources or information across different components of a concurrent process

Methodology:

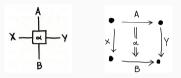
- Considers the concurrent process as a resource

theory (strict symmetric monoidal category)

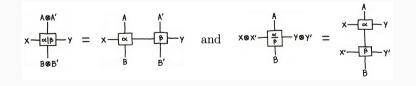
- Augments the string diagrams for symmetric monoidal categories with corners
- Resources flow between different components of the systems through the corners

Single object double category

Start with single object double category

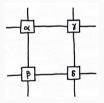


When cells $\alpha \& \beta$ have appropriate matching boundary types, we can have **horizontal** composition $\alpha | \beta$ or vertical composition $\frac{\alpha}{\beta}$ as defined below.



This horizontal & vertical composition needs to satisfy the interchange rule

$$\frac{\alpha}{\beta} |\frac{\gamma}{\delta} = \frac{\alpha |\gamma}{\beta |\delta}$$



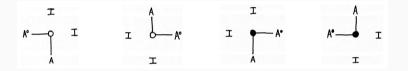
* We shall refer to the horizontal 1-cells as **sequential** 1-cells, and vertical 1-cells as **parallel** 1-cells.

Given a single object double category \mathbb{A} , we get two strict monoidal categories, $S(\mathbb{A})$, $P(\mathbb{A})$ as follows:

The tensor product of sequential morphisms given as follows:

Adding Cornerings

A single object double category is a pro-arrow equipment if for every horizontal 1-cell *A*, there exists parallel 1-cells A° and A^{\bullet} with $A^{\circ} \neq A^{\bullet}$ and the following 2-cells:



called o-corners and o-corners, respectively, which satisfy the yanking equations:

This work considers a concurrent process as a resource theory (strict symmetric monoidal category).

A strict symmetric monoidal category can be interpreted as resource theory ¹ -

Objects: Resources

Arrows: Resource transformations that can be implemented without any cost

Composition: Sequential composition of resource transformations

Tensor: Parallel composition of resources and transformations

Unit object: Trivial resource

¹Coecke, Spekkens, Fritz (2013) "A mathematical theory of resources"

\mathbb{A} -valued exchanges

Given a resource theory (i.e., a strict SMC) \mathbb{A} , the *A*-valued exchanges $\mathbb{A}^{\circ\bullet}$ is the free monoid on the set $(ob(\mathbb{A}) \times \{\circ, \bullet\})$, whose elements are denoted by A° and A^{\bullet} .

The monoid is NOT commutative.

Intuitively, elements of $\mathbb{A}^{\circ\bullet}$ of describe a sequence of resources moving between participants in the exchange.

Alice
$$\longrightarrow$$
 \uparrow $\stackrel{A^{\circ}}{\longleftarrow}$ \uparrow $\stackrel{\oplus}{\longleftarrow}$ $\stackrel{\oplus}{\uparrow}$ $\stackrel{\oplus}{\longleftarrow}$ $\stackrel{\oplus}{\uparrow}$ $\stackrel{\oplus}{\longleftarrow}$ Bob

Free cornering of ${\mathbb A}$

Given a resource theory (i.e., a strict SMC) $\mathbb A,$ the free cornering of $\mathbb A$ is a proarrow equipment $[\mathbb A]$ where,

 $[A]_{H}$: are objects of A (Resources)

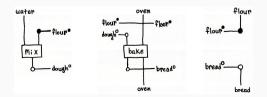
 $[A]_V$ are elements of A-valued exchange monoid (Sequence of resources on the move)

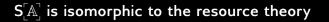
Generating 2 -cells: the \circ -corners and \bullet -corners along with a vertical cell [f] for each $f : A \to B$ subject to the equations:

For $[\mathbb{A}]$, we interpret

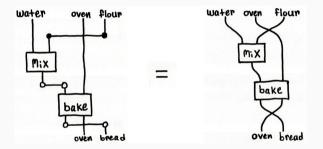
- 1. $[\mathbb{A}]_{H} = as resources$
- 2. $[\mathbb{A}]_V = \mathbb{A}^{\circ \bullet}$ exchange of resources from one party to the other.
- 3. cells of [A] as **concurrent transformations**. Each cell describes a way to transform the collection of resources given by the top boundary into that given by the bottom boundary via participating in *A*-exchanges along the left and right boundaries.

For example, in the free cornering of our bread category,





Combining the prior three bread concurrent transformations, we get



Theorem: There is an isomorphism of categories $S[\mathbb{A}] \cong \mathbb{A}$.

Consider the category $\textbf{P}[\mathbb{A}]$ as the category of resource transducers.

Lemma: There are strong monoidal functors $(-)^{\circ} : \mathbb{A} \to \mathbf{P}[\mathbb{A}]$ and $(-)^{\bullet} : \mathbb{A}^{op} \to \mathbf{P}[\mathbb{A}]$ defined respectively on $f : A \to B$ of \mathbb{A} by:

$$P[\mathbb{A}]$$
 is a linear actegory

For the category of resource transducers P[A] define -

$$\circ: \mathbb{A} \times \mathbf{P}_{\mathbb{L}}^{\mathbb{C}} \mathbb{A}_{\mathbb{J}}^{\mathbb{C}} \to \mathbf{P}_{\mathbb{L}}^{\mathbb{C}} \mathbb{A}_{\mathbb{J}}^{\mathbb{C}}; f \circ h = f^{\circ} \otimes h$$
$$\bullet: \mathbb{A}^{\circ p} \times \mathbf{P}_{\mathbb{L}}^{\mathbb{C}} \mathbb{A}_{\mathbb{J}}^{\mathbb{C}} \to \mathbf{P}_{\mathbb{L}}^{\mathbb{C}} \mathbb{A}_{\mathbb{J}}^{\mathbb{C}}; f \bullet h = f^{\bullet} \otimes h$$

for all resource transducer $h \in \mathbf{P}[\mathbb{A}]$.

Lemma In $\mathbf{H}_{I}^{\mathsf{A}}$, for each A, the functors $A \circ -$ is left adjoint to $A \bullet -$:

P[A] is a linear actegory (cont...)

We seek families of morphisms $\eta_{A,X} : X \to A \bullet (A \circ X)$ and $\varepsilon_{A,X} : A \circ (A \bullet X) \to X$ in $\mathbf{P}[A]$ that satisfy the triangle identities. Define $\eta_{A,X}$ and $\epsilon_{A,X}$, repressively, by

By the yanking equations, the triangles identities hold, as shown below.

Theorem: Let \mathbb{A} be a resource theory. Then, $\mathbf{P}[\mathbb{A}]$ is a linear actegory.

Concurrency, done!

On to quantum ...

Categorical quantum mechanics

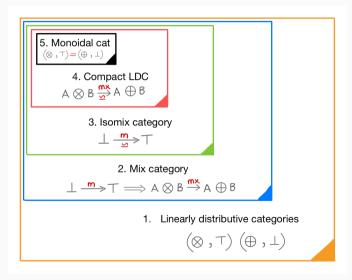
Linear logic captures the essence of quantum mechanics owing to its resource-sensitive character.

(In linear logic) Thou shall not duplicate or discard an arbitrary resource \approx (By no-cloning theorem)Thou shall not duplicate an arbitrary quantum state

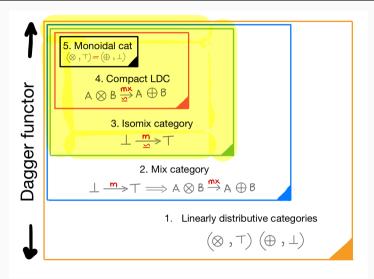
Categorical Quantum Mechanics (CQM) uses this connection to develop a diagrammatic framework based on the graphical calculus of monoidal categories for describing quantum mechanics

CQM introduced a dagger functor for monoidal and compact closed which abstracts unitary evolution of quantum systems.

My thesis introduced dagger isomix and mixed unitary categories as a framework for reasoning about arbitrary dimensional quantum structures.



The LDC Rainbow - Quantum



In a **†-monoidal category**, dagger is a contravariant functor:

- Stationary on objects $A = A^{\dagger}$
- Involution on maps $f^{\dagger\dagger}=f$
- Coherent with the tensor $(f\otimes g)^{\dagger}=f^{\dagger}\otimes g^{\dagger}$
- The basic natural isomorphisms are unitary:

$$a_{\otimes}^{-1} = a_{\otimes}^{\dagger}; \ u_{\otimes}^{-1} = u_{\otimes}^{\dagger}; \ c_{\otimes}^{-1} = c_{\otimes}^{\dagger}$$

Dagger for LDCs

The definition of $\dagger : \mathbb{X}^{op} \to \mathbb{X}$ cannot be directly imported to LDCs because the dagger minimally has to **flip the tensor products**: $(A \otimes B)^{\dagger} = A^{\dagger} \oplus B^{\dagger}$.

Why? If dagger is identity-on-objects, then the linear distributor degenerates to associator:

$$\frac{\delta^{\kappa}: (A \oplus B) \otimes C \to A \oplus (B \otimes C)}{(\delta_{R})^{\dagger}: A \oplus (B \otimes C) \to (A \oplus B) \otimes C}$$

The dagger for an LDC is a contravariant Frobenius functor which is a linear involutive equivalence.

A \dagger -LDC is a LDC X with a dagger functor $\dagger : X^{op} \to X$ and the natural isomorphisms:

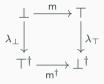
tensor laxtors:
$$\lambda_{\oplus} : A^{\dagger} \oplus B^{\dagger} \to (A \otimes B)^{\dagger}$$

 $\lambda_{\otimes} : A^{\dagger} \otimes B^{\dagger} \to (A \oplus B)^{\dagger}$
unit laxtors: $\lambda_{\top} : \top \to \bot^{\dagger}$
 $\lambda_{\perp} : \bot \to \top^{\dagger}$
involutor: $\iota : A \to A^{\dagger\dagger}$

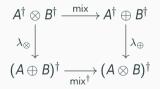
such that certain coherence conditions hold.

†-isomix categories

A †-mix category is a †-LDC with $m : \bot \rightarrow \top$ such that:



Lemma 1: The following diagram commutes in a mix *†*-LDC:



For a \dagger -mix category, if m is an isomorphism, then X is a \dagger -isomix category.

Quantum Message Passing Logic

Research in progress with Robin (2023)

Dagger linear actegory

Recall that a linear actegory is loosely a monoidal category acting on an LDC. A dagger linear actegory is a dagger monoidal category acting on a dagger isomix category.

A dagger linear actegory is a \mathbb{A} -linear actegory ($\mathbb{A}, *, l$) is the monoidal category and let ($\mathbb{X}, \otimes, \top, \oplus, \bot$) be the LDC) such that:

- $(\mathbb{A}, *, I)$ is a \dagger -monoidal category
- (X, \otimes , \top , \oplus , \bot) is †-isomix category
- for all $A \in \mathbb{A}$, and for all $X \in \mathbb{X}$, there exists natural isomorphisms,

$$(\phi_{\bullet})_X : A \bullet X^{\dagger} \to (A \circ X)^{\dagger}$$

 $(\phi_{\circ})_X : A \circ X^{\dagger} \to (A \bullet X)^{\dagger}$

satisfying the following coherences:

Taking a closer look at the isomorphisms:

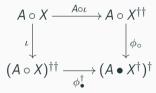
- for all $A \in \mathbb{A}$, and for all $X \in \mathbb{X}$, there exists natural isomorphisms,

$$(\phi_{\bullet})_X : A \bullet X^{\dagger} \xrightarrow{\simeq} (A \circ X)^{\dagger}$$

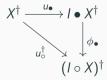
Somehow, the distinction between left and right boundary seems to vanish ...

Dagger linear actegory (cont...)

- Interaction of the nat. isos with the involutor (2 coh.)



- Interaction of the nat. isos with u_{\bullet} and u_{\circ} (2 coh.)



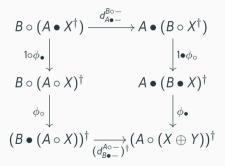
- Interaction of the nat. isos with a^*_{ullet} and a^*_{\circ} (2 coh.)

- Interaction of the nat. isos with a°_\oplus and a^ullet_\oplus (2 coh.)

Interaction with the nat. trans. d^{ullet}_{\otimes} and d°_{\oplus} (2 coh.):

$$\begin{array}{c} (A \bullet X^{\dagger}) \otimes Y^{\dagger} & \stackrel{d_{\otimes}^{\bullet}}{\longrightarrow} A \bullet (X^{\dagger} \otimes Y^{\dagger}) \\ \downarrow^{\phi_{\bullet} \otimes 1} & & \downarrow^{1 \bullet \lambda_{\otimes}} \\ (A \circ X)^{\dagger} \otimes Y^{\dagger} & A \bullet (X \oplus Y)^{\dagger} \\ \downarrow^{\lambda_{\otimes}} & & \downarrow^{\phi_{\bullet}} \\ ((A \circ X) \oplus Y)^{\dagger} & \stackrel{d_{\otimes}^{\circ \dagger}}{\xrightarrow{d_{\oplus}^{\circ \dagger}}} (A \circ (X \oplus Y))^{\dagger} \end{array}$$

Interaction with the nat. trans. d_{\bullet}° (1 coh.):



Example of a dagger linear actegory: Mixed unitary categories

What is a mixed unitary category?

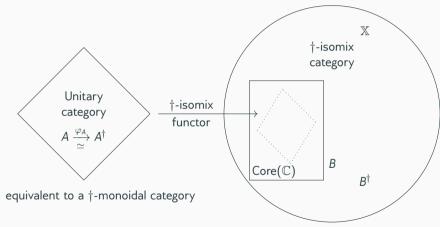
The core of a mix category, $Core(X) \subseteq X$, is the full subcategory determined by objects $U \in X$ for which the natural transformation is also an isomorphism:

 $U \otimes A \xrightarrow{\mathsf{mx}_{U,A}} U \oplus A$

The core of a **mix** category is closed to \otimes and \oplus .

The core of an isomix category contains the monoidal units \top and $\bot.$

Mixed unitary categories (MUCs)



A mixed unitary category, $M : \mathbb{U} \to \mathbb{C}$, is

 $\dagger\text{-}\mathsf{isomix}$ functor: unitary category \rightarrow $\dagger\text{-}\mathsf{isomix}$ category

Theorem: A mixed unitary category with unitary duals is a linear actegory.

Proof (Sketch):

Let $M:\mathbb{U} \to \mathbb{C}$ be a mixed unitary category with unitary duals. For all $U \in \mathbb{U}$,

 $U \circ C := M(U) \otimes C$ $U \bullet C := M(U^{\dagger}) \oplus C$

We need \mathbb{U} to have dagger duals $(U \dashv U^{\dagger})$ to get the adjunction $U \circ - \dashv U \bullet -$

for all $U \in \mathbb{U}$, we need a family of maps:

$$\eta_X : X \to U \bullet (U \circ X) :=?$$

$$\epsilon_X : U \circ (U \bullet X) \to X :=?$$

And have to define the six natural isomorphisms and the three natural transformations:

....

Theorem: A mixed unitary category with unitary duals is a dagger linear actegory.

for all $A \in \mathbb{A}$ what are the following family of maps?

$$(\phi_{\bullet})_X : A \bullet X^{\dagger} \to (A \circ X)^{\dagger} := ?$$

 $(\phi_{\circ})_X : A \circ X^{\dagger} \to (A \bullet X)^{\dagger} := ?$

Examples of MUCs

- Every †-monoidal category is a MUC
- FinRel \hookrightarrow FRel: Finite relations embedded into finiteness relations
- $Mat(\mathbb{C}) \hookrightarrow FMat(\mathbb{C})$: Complex finite dimensional matrices embedded into finiteness matrices over a commutative rig R
- FHilb \hookrightarrow Chus_I(Vec(\mathbb{C})): Finite-dimensional Hilbert spaces embedded into Chu spaces over complex vector spaces
- Unitary construction: Given any \dagger -isomix category \mathbb{C} one can construct a canonical MUC, Unitary(\mathbb{C}) $\hookrightarrow \mathbb{C}$, by choosing its pre-unitary objects.

Unitary(\mathbb{C}):

Objects: Pre-unitary objects (U, α) ;

Maps: $(U, \alpha) \xrightarrow{f} (V, \beta)$ where $U \xrightarrow{f} V$ is any map of X.

How does the definition of dagger linear actegory fit in Chad Nester's framework?

Read with caution: Hence, what is a 'dagger proarrow equipment' for a single object double category or what is a dagger double category?

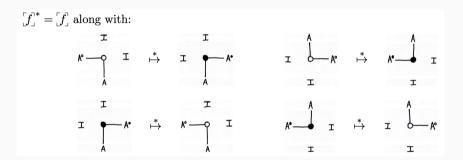
Chad notices, for any resource theory \mathbb{A} , there exists an contravariant involution

$$(-)^*: \mathbf{P}[\mathbb{A}]^{\mathsf{op}} o \mathbf{P}[\mathbb{A}]$$

given as follows:

$$(A^\circ)^* = A^\bullet \qquad (A^\bullet)^* = A^\circ$$

The involution on $\mathbf{P}[\mathbb{A}]$ allows an contravariant involution $(-)^*$ to be defined on $[\mathbb{A}]$:



Can we similarly define a dagger involution?

- * Build a toy model of dagger linear actegories by extending Chad Nester's framework?
- * Describe quantum communication protocols
- * Term calculus of quantum message passing logic
- \ast Proof theory of quantum message passing logic
- * A curry-Howard Lambek like correspondence
- * Programming syntax for this logic

Thanks to Brandon Baylor, Durgesh Kumar, Fabian Wesner, Isaiah B. Hilsenrath, Paige Frederick, Rose Kudzman-Blais from the ACT adjoint school 2023 for all the fun discussions!

