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Clifford operators

▶ The set of Clifford operators is generated by the operators

i , K =
1− i

2

(
1 1
1 −1

)
, S =

(
1 0
0 i

)
, CZ =

 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

,

and is closed under multiplication and tensor product.

▶ Every such operator U is of size 2n × 2n for some natural number n. We say that
U is an operator on n qubits. We write C(n) for the set of n-qubit Clifford
operators.

▶ Peter found normal forms and complete relations for C(n).



Clifford+CS operators
▶ We obtain a universal gate set by also adding the CS gate as a generator

CS =

 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 i

.

The resulting operators are called the Clifford+CS operators.

▶ We focus on the case when n = 3. Let I be the 2× 2 identity operator. We write

K0 = K ⊗ I ⊗ I , K1 = I ⊗ K ⊗ I , K2 = I ⊗ I ⊗ K ,

and similarly for S0, ...,S2. We write

CS01 = CS ⊗ I , CS12 = I ⊗ CS ,

and similarly for CZ01,CZ12. We also identify the scalar i with the 8× 8-matrix
i(I ⊗ I ⊗ I ).



Clifford+CS operators

▶ We use circuit notation, for example

K

= K0, S = S1,
i = CS01, = CZ12.

▶ Circuit composition is matrix multiplication, i.e.,

i
= CS01CZ12,

K

S = K0S1 =
K

S , to save space.

▶ We use CS(n) to denote n-qubit Clifford+CS operators.



Monoid presentation

▶ Let X be a set. We write X ∗ for the set of finite sequences of elements of X ,
which we also call words over the alphabet X .

▶ We write w · v or simply wv for the concatenation of words, making X ∗ into a
monoid. The unit of this monoid is the empty word ϵ. As usual, we identify X
with the set of one-letter words.

▶ A relation over X is an element of X ∗ × X ∗, i.e., an ordered pair of words, written
as w = v , by a slight abuse of notation.



Group presentation

▶ A congruence relation is a relation that satisfies reflexivity, symmetry, transitivity
and congruence i.e.

a = a′ and b = b′ =⇒ ab = a′b′

▶ Given a set X and a congurence relation R over X , then X ∗ modulo R is also a
monoid. Call it M. We say (X ,R) is an presentation of M in terms of generators
X and relations R.

▶ When R includes relations of the form xy = ϵ for all x ∈ X , M is also a group,
and (X ,R) also is a group presentation.



Motivation

▶ The result could potentially be used to minimize the CS-count and find normal
forms,

S†
K

S

K

S
= S† K

S

K S .

▶ For Clifford+T operators, where T =
(
1 0
0 ω

)
, and ω =

√
2
2 (1 + i).

▶ Matsumoto and Amano gave a T-optimal normal form for 1-qubit case.

(T | ε)(KT | SKT )∗C , where C is some Clifford operator.

▶ Bian and Selinger gave a generator and relation result for 2-qubit case.
▶ Li et al. gave an almost T-optimal norm form for 2-qubit case in April, 2023.

▶ For Clifford+CS operators, which is a proper subgroup of Clifford+T .
▶ Glaudell et al. gave a CS-optimal normal form for 2-qubit case.



A known result and a known procedure

▶ A finite presentation of a supergroup Un(Z[12 , i ]) of Clifford+CS is known [2].
▶ Here Z[ 12 , i ] is the smallest subring of the complex numbers containing 1

2 and i .
▶ Un(Z[ 12 , i ]) is the group of unitary n × n-matrices with entries in Z[ 12 , i ].
▶ The index is 2.

▶ The Reidemeister-Schreier procedure [7, 8] is used for finding generators and
relations of a subgroup, given generators and relations of the supergroup.
▶ Computationally efficient.
▶ Formally verified in proof assistant Agda [3].



Reidemeister-Schreier theorem — special case

▶ Let G be a group, presented by (X , Γ). Let Y be another generating set.

▶ We have back-forth translations: define

f : X → Y∗, g : Y → X ∗,

then extend them to
f ∗ : X ∗ → Y∗, g∗ : Y∗ → X ∗.

▶ Then (Y,∆) is another presentation of G , where

∆ = {f ∗(g(y)) = y : y ∈ Y} ∪ {f ∗(u) = f ∗(t) : u = t ∈ Γ}.



Reidemeister-Schreier theorem — full version

▶ Let G be a group, presented by (X , Γ). Let H be a subgroup of G generated by Y.

▶ One direction of the translation g : Y → X ∗ still works. Let C be the set of coset
representatives, define, in a proper way

f : C ×X → Y∗ × C ,

then, we can extend f to f ∗∗ : C ×X ∗ → Y∗ × C ,

f ∗∗(c0, x1 . . . xn) = (w1 · . . . · wn, cn), where f (ci−1, xi ) = (wi , ci ).

▶ Then (Y,∆) is a presentation of H, where

∆ = {f ∗∗∗(I , g(y)) = y : y ∈ Y}
∪ {f ∗∗∗(c , u) = f ∗∗∗(c , t) : u = t ∈ Γ, c ∈ C},

and where f ∗∗∗(c , x) = fst(f ∗∗(c , x)).



Reidemeister-Schreier theorem — monoid version

Theorem 2.1 (Reidemeister-Schreier theorem for monoids). Let X and Y be sets, and
let Γ and ∆ be sets of relations over X and Y , respectively. Suppose that the following
additional data is given:

▶ a set C with a distinguished element I ∈ C ,

▶ a function f : X → Y ∗,

▶ a function h : C × Y → X ∗ × C ,

subject to the following conditions:

a. For all x ∈ X , if h∗∗(I , f (x)) = (v , c), then v ∼Γ x and c = I .

b. For all c ∈ C and w ,w ′ ∈ Y ∗ with (w ,w ′) ∈ ∆, if h∗∗(c ,w) = (v , c ′) and
h∗∗(c,w ′) = (v ′, c ′′) then v ∼Γ v ′ and c ′ = c ′′.

Then for all v , v ′ ∈ X ∗, f ∗(v) ∼∆ f ∗(v ′) implies v ∼Γ v ′.



Main theorem

Theorem 3.1. The 3-qubit Clifford+CS group is presented by (X , ΓX ), where the set
of generators is

X = {i ,K0,K1,K2, S0,S1,S2,CS01,CS12},

and the set of relations ΓX is shown in Figure 2.







Main theorem proof outline

▶ G is the subgroup of U8(Z[12 , i ]) consisting of matrices whose determinant is a
power of −1, which has index 2.

▶ A presentation of U8(Z[12 , i ]) by generators and relations was given by [6].

▶ Apply the Reidemeister-Schreier procedure.

▶ Simplify the output.



Relation simplification

▶ The Reidemeister-Schreier procedure produces thousands of Clifford+CS relations.
We must verify that each of them is derivable from relations (a) - (e). This task is
too much to do “by hand”. We use some automation.

▶ We define an almost normal form to simplify relations. Most of the relations
simplify to trivial.

▶ The almost normalization procedure only uses relations in Fig 2.

▶ We formalized the Main Theorem and its proof in the proof assistant Agda [1].



Almost normal form

▶ We found normal forms for many finite subgroups. In particular, we are interested
in three of them (each is maximal in some sense and finite).

▶ Each group element is the product of elements from the three subgroups.

▶ Normalize each factor and then simplify the result using the following relations.



K K
=

K K

K K

=
K K

K K ′

=
K K ′

K K ′

=
K K ′

K

=
K

K K

=
K K



Normal forms for many finite subgroups

▶ W , the subgroup of permutation matrices generated by XW = {Swap01, Swap12}.
▶ Q, the subgroup of permutation matrices generated by XQ = {X0,CX10,CX20,CCX0}.
▶ C , the subgroup of permutation matrices generated by XC = {X1,CX12,CX21}.
▶ CQ, the subgroup generated by XC and XQ .

▶ P, the subgroup of permutation matrices generated by XP = {CX01,CX10,CX12,CX21,CCX0,X0}.
▶ D, the diagonal subgroup generated by XD = {i ,S0, S1,S2,CS01,CS12,CS02,CCZ}.
▶ PD, the subgroup generated by XP and XD .

▶ QD, the subgroup generated by XQ and XD .

▶ CQD, the subgroup generated by XC , XQ and XD .

▶ K0D the subgroup generated by {K0} ∪ XD . Note that this group contains Q, so it can also be
denoted by K0QD.

▶ K0CD, the subgroup generated by {K0} ∪ XC ∪ XD . Since this group contains Q, it can also be
denoted by K0CQD.

▶ K0W , the subgroup generated by K0 and XW .



Inclusion graph of various finite subgroups

PD K0W K0CQD

P CQD K0QD

W CQ QD ⟨K0⟩

C Q D



Amalgamation of two monoids

Given monoids M1, M2, and H with morphisms H → M1 and H → M2, the
amalgamated product M1 ∗H M2 is the pushout

H M2

M1 M1 ∗H M2.
⌜



Amalgamation of three monoids

The amalgamated product of three monoids is defined similarly. Suppose M1, M2, M3,
H12, H23, H13 are monoids with morphisms Hjk → Hj and Hjk → Hk for all relevant j
and k . Then the amalgamated product P is the colimit of the following diagram,
which generalizes a pushout:

H23

H13 M3

H12 M2

M1 P.



Amalgamation in terms of generators and relations

▶ Suppose we have three sets of generators X , Y , and Z , and three monoid
presentations

M1 = ⟨X ∪ Y | Γ1⟩, M2 = ⟨X ∪ Z | Γ2⟩, and M3 = ⟨Y ∪ Z | Γ3⟩.

▶ We can take H12 = ⟨X ⟩, H13 = ⟨Y ⟩ and H23 = ⟨Z ⟩, with the obvious maps.

▶ Then the amalgamated product P has the presentation ⟨X ∪Y ∪Z | Γ1 ∪ Γ2 ∪ Γ3⟩.

▶ In cases where P is an infinite monoid or group, it is remarkable when M1, M2,
and M3 can be chosen to be finite.



CS(3) is an amalgamated product of three finite groups

Using the main theorem, we can show that CS(3) is an amalgamated product of three
finite groups.

PD K0W K0CQD

P CQD K0QD

W CQ QD ⟨K0⟩

C Q D

W

CQD PD

⟨K0⟩ K0W

K0CQD CS(3)
The slogan is “the only relations that hold in CS(3) are relations that hold in a finite
subgroup of CS(3)”.



Future work

▶ Normal forms for 3-qubit Clifford+CS operators.

▶ Complete relations for 4-qubit Clifford+CS operators.

▶ Complete relations for 3-qubit Clifford+T operators.



Thank you

▶ Thank you for your attention.

▶ Looking for jobs. Expected graduation: 2023 Fall.
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