Generators and relations for 3-qubit Clifford+CS Operators

Xiaoning Bian and Peter Selinger

Dalhousie University

Presented at 30th FMCS workshop
Mount Allison University
June 9, 2023

Contents

Background
Definitions and notations
Motivation
Known result and known procedure Reidemeister-Schreier theorem

Main theorem
Proof of the main theorem
Proof outline
Relation simplification
Almost normal form
Main Corollary

Clifford operators

- The set of Clifford operators is generated by the operators

$$
i, \quad K=\frac{1-i}{2}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right), \quad S=\left(\begin{array}{ll}
1 & 0 \\
0 & i
\end{array}\right), \quad C Z=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right) \text {, }
$$

and is closed under multiplication and tensor product.

- Every such operator U is of size $2^{n} \times 2^{n}$ for some natural number n. We say that U is an operator on n qubits. We write $\mathcal{C}(n)$ for the set of n-qubit Clifford operators.
- Peter found normal forms and complete relations for $\mathcal{C}(n)$.

Clifford + CS operators

- We obtain a universal gate set by also adding the CS gate as a generator

$$
C S=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & i
\end{array}\right)
$$

The resulting operators are called the Clifford + CS operators.

- We focus on the case when $n=3$. Let I be the 2×2 identity operator. We write

$$
K_{0}=K \otimes I \otimes I, \quad K_{1}=I \otimes K \otimes I, \quad K_{2}=I \otimes I \otimes K
$$

and similarly for S_{0}, \ldots, S_{2}. We write

$$
C S_{01}=C S \otimes I, \quad C S_{12}=I \otimes C S
$$

and similarly for $C Z_{01}, C Z_{12}$. We also identify the scalar i with the 8×8-matrix $i(I \otimes I \otimes I)$.

Clifford + CS operators

- We use circuit notation, for example

$$
\overline{\sqrt{K}-}=K_{0}, \quad \overline{\sqrt{S}}=S_{1}, \quad \bar{\square}, \quad=S_{01}, \quad \bar{\square}=C Z_{12} .
$$

- Circuit composition is matrix multiplication, i.e.,

$$
\underset{!-i}{\square!}=C S_{01} C Z_{12}, \quad \stackrel{\sqrt{K}}{\square}=K_{0} S_{1}=\frac{\sqrt{K}-}{\sqrt{S}-}, \text { to save space. }
$$

- We use $\mathcal{C S}(n)$ to denote n-qubit Clifford+CS operators.

Monoid presentation

- Let X be a set. We write X^{*} for the set of finite sequences of elements of X, which we also call words over the alphabet X.
- We write $w \cdot v$ or simply $w v$ for the concatenation of words, making X^{*} into a monoid. The unit of this monoid is the empty word ϵ. As usual, we identify X with the set of one-letter words.
- A relation over X is an element of $X^{*} \times X^{*}$, i.e., an ordered pair of words, written as $w=v$, by a slight abuse of notation.

Group presentation

- A congruence relation is a relation that satisfies reflexivity, symmetry, transitivity and congruence i.e.

$$
a=a^{\prime} \text { and } b=b^{\prime} \Longrightarrow a b=a^{\prime} b^{\prime}
$$

- Given a set X and a congurence relation R over X, then X^{*} modulo R is also a monoid. Call it M. We say (X, R) is an presentation of M in terms of generators X and relations R.
- When R includes relations of the form $x y=\epsilon$ for all $x \in X, M$ is also a group, and (X, R) also is a group presentation.

Motivation

- The result could potentially be used to minimize the CS-count and find normal forms,

- For Clifford $+T$ operators, where $T=\left(\begin{array}{cc}1 & 0 \\ 0 & \omega\end{array}\right)$, and $\omega=\frac{\sqrt{2}}{2}(1+i)$.
- Matsumoto and Amano gave a T-optimal normal form for 1-qubit case.

$$
(T \mid \varepsilon)(K T \mid S K T)^{*} C, \text { where } C \text { is some Clifford operator. }
$$

- Bian and Selinger gave a generator and relation result for 2-qubit case.
- Li et al. gave an almost T-optimal norm form for 2-qubit case in April, 2023.
- For Clifford + CS operators, which is a proper subgroup of Clifford $+T$.
- Glaudell et al. gave a CS-optimal normal form for 2-qubit case.

A known result and a known procedure

- A finite presentation of a supergroup $U_{n}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right)$ of Clifford $+C S$ is known [2].
- Here $\mathbb{Z}\left[\frac{1}{2}, i\right]$ is the smallest subring of the complex numbers containing $\frac{1}{2}$ and i.
- $U_{n}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right)$ is the group of unitary $n \times n$-matrices with entries in $\mathbb{Z}\left[\frac{1}{2}, i\right]$.
- The index is 2 .
- The Reidemeister-Schreier procedure $[7,8]$ is used for finding generators and relations of a subgroup, given generators and relations of the supergroup.
- Computationally efficient.
- Formally verified in proof assistant Agda [3].

Reidemeister-Schreier theorem — special case

- Let G be a group, presented by (\mathcal{X}, Γ). Let \mathcal{Y} be another generating set.
- We have back-forth translations: define

$$
f: \mathcal{X} \rightarrow \mathcal{Y}^{*}, g: \mathcal{Y} \rightarrow \mathcal{X}^{*}
$$

then extend them to

$$
f^{*}: \mathcal{X}^{*} \rightarrow \mathcal{Y}^{*}, g^{*}: \mathcal{Y}^{*} \rightarrow \mathcal{X}^{*}
$$

- Then (\mathcal{Y}, Δ) is another presentation of G, where

$$
\Delta=\left\{f^{*}(g(y))=y: y \in \mathcal{Y}\right\} \cup\left\{f^{*}(u)=f^{*}(t): u=t \in \Gamma\right\} .
$$

Reidemeister-Schreier theorem - full version

- Let G be a group, presented by (\mathcal{X}, Γ). Let H be a subgroup of G generated by \mathcal{Y}.
- One direction of the translation $g: \mathcal{Y} \rightarrow \mathcal{X}^{*}$ still works. Let C be the set of coset representatives, define, in a proper way

$$
f: C \times \mathcal{X} \rightarrow \mathcal{Y}^{*} \times C
$$

then, we can extend f to $f^{* *}: C \times \mathcal{X}^{*} \rightarrow \mathcal{Y}^{*} \times C$,

$$
f^{* *}\left(c_{0}, x_{1} \ldots x_{n}\right)=\left(w_{1} \cdot \ldots \cdot w_{n}, c_{n}\right), \text { where } f\left(c_{i-1}, x_{i}\right)=\left(w_{i}, c_{i}\right)
$$

- Then (\mathcal{Y}, Δ) is a presentation of H, where

$$
\begin{aligned}
\Delta & =\left\{f^{* * *}(I, g(y))=y: y \in \mathcal{Y}\right\} \\
& \cup\left\{f^{* * *}(c, u)=f^{* * *}(c, t): u=t \in \Gamma, c \in C\right\}
\end{aligned}
$$

and where $f^{* * *}(c, x)=f s t\left(f^{* *}(c, x)\right)$.

Reidemeister-Schreier theorem — monoid version

Theorem 2.1 (Reidemeister-Schreier theorem for monoids). Let X and Y be sets, and let Γ and Δ be sets of relations over X and Y, respectively. Suppose that the following additional data is given:

- a set C with a distinguished element $I \in C$,
- a function $f: X \rightarrow Y^{*}$,
- a function $h: C \times Y \rightarrow X^{*} \times C$,
subject to the following conditions:
a. For all $x \in X$, if $h^{* *}(I, f(x))=(v, c)$, then $v \sim_{\Gamma} x$ and $c=I$.
b. For all $c \in C$ and $w, w^{\prime} \in Y^{*}$ with $\left(w, w^{\prime}\right) \in \Delta$, if $h^{* *}(c, w)=\left(v, c^{\prime}\right)$ and $h^{* *}\left(c, w^{\prime}\right)=\left(v^{\prime}, c^{\prime \prime}\right)$ then $v \sim_{\Gamma} v^{\prime}$ and $c^{\prime}=c^{\prime \prime}$.
Then for all $v, v^{\prime} \in X^{*}, f^{*}(v) \sim_{\Delta} f^{*}\left(v^{\prime}\right)$ implies $v \sim_{\Gamma} v^{\prime}$.

Main theorem

Theorem 3.1. The 3-qubit Clifford $+C S$ group is presented by $\left(\mathcal{X}, \Gamma_{X}\right)$, where the set of generators is

$$
\mathcal{X}=\left\{i, K_{0}, K_{1}, K_{2}, S_{0}, S_{1}, S_{2}, C S_{01}, C S_{12}\right\}
$$

and the set of relations Γ_{X} is shown in Figure 2.
(a) Relations for $n \geq 0$:

$$
\begin{equation*}
i^{4}=\varepsilon \tag{C1}
\end{equation*}
$$

(b) Relations for $n \geq 1$:

$$
\begin{align*}
K^{2} & =i^{3} \tag{C2}\\
S^{4} & =\varepsilon \tag{C3}\\
S K S K S K & =i^{3} \tag{C4}
\end{align*}
$$

(c) Relations for $n \geq 2$:

$$
\begin{align*}
& \text { Ti.i.i.i.i}=- \tag{C5}\\
& \sqrt{s+\overbrace{i}}=\vec{j}_{i} \tag{C6}\\
& \overline{-s \Gamma^{i}}=\overline{]^{i} s} \tag{C7}\\
& -\sqrt{x-i}=\overrightarrow{]_{i} i_{i} i_{i} \sqrt{x}-} \tag{C8}\\
& \overline{-x \cdot i}=\overrightarrow{0} \cdot i \cdot i \cdot \sqrt{5}- \tag{C9}
\end{align*}
$$

(d) Relations for $n=3$:

(e) Monoidal relations: the scalar i commutes with everything, and non-overlapping gates commute.

Figure 2: Complete relations for $\mathscr{C S}$ (3). Each relation in (b) denotes three relations (one for each qubit), and each relation in (c) denotes two relations (one for each pair of adjacent qubits).

Main theorem proof outline

- G is the subgroup of $U_{8}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right)$ consisting of matrices whose determinant is a power of -1 , which has index 2 .
- A presentation of $U_{8}\left(\mathbb{Z}\left[\frac{1}{2}, i\right]\right)$ by generators and relations was given by [6].
- Apply the Reidemeister-Schreier procedure.
- Simplify the output.

Relation simplification

- The Reidemeister-Schreier procedure produces thousands of Clifford+CS relations. We must verify that each of them is derivable from relations (a) - (e). This task is too much to do "by hand". We use some automation.
- We define an almost normal form to simplify relations. Most of the relations simplify to trivial.
- The almost normalization procedure only uses relations in Fig 2.
- We formalized the Main Theorem and its proof in the proof assistant Agda [1].

```
soundness-property : Set
soundness-property = \forall {w v} -> Clifford+CS.Rel }\vdash\textrm{w === v -> TwoLevel.Rel }\vdash\mathrm{ (f *) w === (f *) v
completeness-property : Set
completeness-property = \forall {w v} -> TwoLevel.Rel }\vdash(f*) w === (f *) v -> Clifford+CS.Rel b w === v
\Pi
```


Almost normal form

- We found normal forms for many finite subgroups. In particular, we are interested in three of them (each is maximal in some sense and finite).
- Each group element is the product of elements from the three subgroups.
- Normalize each factor and then simplify the result using the following relations.

Normal forms for many finite subgroups

- W, the subgroup of permutation matrices generated by $\mathcal{X}_{W}=\left\{\right.$ Swap $\left._{01}, S_{w a p} p_{12}\right\}$.
- Q, the subgroup of permutation matrices generated by $\mathcal{X}_{Q}=\left\{X_{0}, C X_{10}, C X_{20}, C C X_{0}\right\}$.
- C, the subgroup of permutation matrices generated by $\mathcal{X}_{C}=\left\{X_{1}, C X_{12}, C X_{21}\right\}$.
- $C Q$, the subgroup generated by \mathcal{X}_{C} and \mathcal{X}_{Q}.
- P, the subgroup of permutation matrices generated by $\mathcal{X}_{P}=\left\{C X_{01}, C X_{10}, C X_{12}, C X_{21}, C C X_{0}, X_{0}\right\}$.
- D, the diagonal subgroup generated by $\mathcal{X}_{D}=\left\{i, S_{0}, S_{1}, S_{2}, C S_{01}, C S_{12}, C S_{02}, C C Z\right\}$.
- PD, the subgroup generated by \mathcal{X}_{P} and \mathcal{X}_{D}.
- QD, the subgroup generated by \mathcal{X}_{Q} and \mathcal{X}_{D}.
- CQD, the subgroup generated by $\mathcal{X}_{C}, \mathcal{X}_{Q}$ and \mathcal{X}_{D}.
- $K_{0} D$ the subgroup generated by $\left\{K_{0}\right\} \cup \mathcal{X}_{D}$. Note that this group contains Q, so it can also be denoted by $K_{0} Q D$.
- $K_{0} C D$, the subgroup generated by $\left\{K_{0}\right\} \cup \mathcal{X}_{C} \cup \mathcal{X}_{D}$. Since this group contains Q, it can also be denoted by $K_{0} C Q D$.
- $K_{0} W$, the subgroup generated by K_{0} and \mathcal{X}_{W}.

Inclusion graph of various finite subgroups

Amalgamation of two monoids

Given monoids M_{1}, M_{2}, and H with morphisms $H \rightarrow M_{1}$ and $H \rightarrow M_{2}$, the amalgamated product $M_{1} *_{H} M_{2}$ is the pushout

Amalgamation of three monoids

The amalgamated product of three monoids is defined similarly. Suppose M_{1}, M_{2}, M_{3}, H_{12}, H_{23}, H_{13} are monoids with morphisms $H_{j k} \rightarrow H_{j}$ and $H_{j k} \rightarrow H_{k}$ for all relevant j and k. Then the amalgamated product P is the colimit of the following diagram, which generalizes a pushout:

Amalgamation in terms of generators and relations

- Suppose we have three sets of generators X, Y, and Z, and three monoid presentations

$$
M_{1}=\left\langle X \cup Y \mid \Gamma_{1}\right\rangle, \quad M_{2}=\left\langle X \cup Z \mid \Gamma_{2}\right\rangle, \text { and } M_{3}=\left\langle Y \cup Z \mid \Gamma_{3}\right\rangle
$$

- We can take $H_{12}=\langle X\rangle, H_{13}=\langle Y\rangle$ and $H_{23}=\langle Z\rangle$, with the obvious maps.
- Then the amalgamated product P has the presentation $\left\langle X \cup Y \cup Z \mid \Gamma_{1} \cup \Gamma_{2} \cup \Gamma_{3}\right\rangle$.
- In cases where P is an infinite monoid or group, it is remarkable when M_{1}, M_{2}, and M_{3} can be chosen to be finite.

$\mathcal{C S}(3)$ is an amalgamated product of three finite groups

Using the main theorem, we can show that $\mathcal{C S}(3)$ is an amalgamated product of three finite groups.

The slogan is "the only relations that hold in $\mathcal{C S}(3)$ are relations that hold in a finite subgroup of $\mathcal{C S}(3)$ ".

Future work

- Normal forms for 3-qubit Clifford+CS operators.
- Complete relations for 4-qubit Clifford+CS operators.
- Complete relations for 3-qubit Clifford $+T$ operators.

Thank you

- Thank you for your attention.
- Looking for jobs. Expected graduation: 2023 Fall.

References

图 Agda documentation． https：／／agda．readthedocs．io／ Accessed：2022－02－15
园 X ．Bian and P ．Selinger
Generators and relations for $U_{n}(\mathbb{Z}[1 / 2, i])$ ．
In Proceedings of the 18th International Conference on Quantum Physics and Logic，QPL 2021， Gdansk，Poland，volume 343 of Electronic Proceedings in Theoretical Computer Science，pages 145－164， 2021.
Also available from arXiv：2105．14047．
图 X．Bian and P．Selinger． Generators and relations for 2－qubit Clifford $+T$ operators． To appear in QPL 2022．Available from arXiv：2204．02217，Apr． 2022
园 B．Giles and P．Selinger．
Exact synthesis of multiqubit Clifford $+T$ circuits．
Physical Review A，87（3）：032332（7 pages）， 2013.
Also available from arXiv：1212．0506．
图 D．Gosset，V．Kliuchnikov，M．Mosca，and V．Russo．

An algorithm for the T－count．

Quantum Information and Computation，14（15－16）：1261－1276， 2014
Also available from arXiv：1308．4134．
屋 S．E．M．Greylyn．
Generators and relations for the group $U_{4}\left(\mathbb{Z}\left[\frac{1}{\sqrt{2}}, i\right]\right)$ M．Sc．thesis，Dalhousie University， 2014. Available from arXiv：1408．6204
图 K．Reidemeister．
Knoten und Gruppen．
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg，5（1）：7－23， 1927.
國 O．Schreier．
Die Untergruppen der freien Gruppen．
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg，5（1）：161－183， 1927.

