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GOALS OF THE TALK

Unpack the notion of a cartesian double category
Discuss Examples
Study a bit the notion of discreteness

Convince you that cartesian double categories are interesting

and useful

Exhibit a double category of pointless spaces



SOME HISTORY



CARTESIAN BICATEGORIES

Carboni & Walters, Cartesian Bicategories (1987) [CW87]
When is a monoidal bicategory recognizably cartesian?
Examples: orders, partial maps, relations.

Which bicategories are ~ Rel(&) for regular &7
Centrality of functional completeness and discreteness.

Carboni et. al., Cartesian Bicategories Il (2008) [CKWWO08]

Extend previous considerations to bicategories not

necessarily locally posetal (e.g. profunctors, spans)

Concept groupoidal replaces discreteness.



CARTESIAN DOUBLE CATEGORIES

Eva Aleiferi, Cartesian Double Categories (2018) [Ale18]

Define the notion in the spirit of [CKWWO08].
Which double cats are ~ Span(&) for fin. compl. &7

M.L., Double Categories of Relations (2022) [Lam22]
Which double categories are ~ Rel(&) for regular &7
Equipment structure needed: The horizontal bicategory of
any cartesian equipment is a cartesian bicategory.
Consequently, discreteness as in [CW8T].

Functional completeness in terms of tabulators.



FURTHER COMMENTS ON LITERATURE

Carboni & Street, Order Ideals in Categories [CS86]
2-category of orders and order-preserving maps
Bicategory of orders and ideals
These combine to form a double category. Is it cartesian?
Number of interesting subsidiary results in [CW87]
Discrete objects in monoids in semilattices are Joyal and
Tierney’s discrete spaces [JT84, §4.2]
Discrete objects in the bicategory of orders and ideals are

precisely equivalence relations [CW87, Example 2.3(ii)].



DOUBLE CATEGORY BASICS



DEFINITION

A double category D is a (pseudo) category in Cat.
Dy is the category of objects and ordinary arrows f: A — B.

D; is the category of proarrows M: A -+ B and cells:

source, target, unit functors src, tgt: D; = Dg, y: Dg — D1

external composition for proarrows M ® N and cells ¢ ® ¥

(diagrammatic, associative up to coherent iso)



EXAMPLES
Old friends:

Q(X) - quintets in X a 2-category

(7, ®) - one object double category on a monoidal category

B - bicategory as a double category with only identity arrows
Span - sets, functions, spans

Rel - sets, functions, relations

Mat(7) - sets, functions, and ¥ -matrices

Ring - rings (with unit), (unital) homomorphisms, bimodules
Prof - categories, functors, profunctors

Met - (Lawvere) metric spaces and metric profunctors



SPANS IN SOME DETAIL

objects are sets
morphisms are set functions f: X — Y
aproarrow X - YisaspanX < S — Y

a cellis a span morphism

X < S > Y
fl loc lg
W < T > W

: : : 1 1
external units are identity spans X <= x =% x



SPANS IN FURTHER DETAIL

Span composition is by pullback

X — U -

Associators induced by universal property of pullbacks; these satisfy a

coherence condition.



EXAMPLES CONTINUED

New (?) acquaintances:
2 - ordinal double category
Idl(&) - orders and ideals in regular &
Slat - semilatices and modules
Frame - frames and modules
Loc - locales and modules
DEsp - 2-/double spaces and modules
Mod(D) - monoids and modules for suitable D

More on these in due course.



DEFINITION [SHUO0S8, §4]

A double category D is an equipment if the source-target projection
(src,tgt): Dy — Do x Dg is equivalently

a fibration

an opfibration

a bifibration.
Elsewhere these have been called framed bicategories [Shu08],
fibrant double categories [Ale18] and gregarious double
categories [DPP10]. The name equipment recalls Richard Wood’s

proarrow equipment [Wo082]



NICHES AND CONICHES

every niche completes to a cartesian cell

fiNg*
A B A—+— B
fl lg ~ fl restr lg
C —I\ol—> D C —Iov—> D

every coniche completes to an opcartesian cell

A1, B A-M.,pB
fl lg ~ fl ext lg



CARTESIAN UNIVERSAL PROPERTY

For any such cell «, there exists a unique globular cell satisfying:

e e
l I
. = x k
f;Ng fh 9
fl restr lg

Dually for extension cells.



EXAMPLE

In relations, a niche is equivalently a corner as at left:

N

[t

AxB —— CxD
fxg

The restriction is formed as the pullback, and cartesian is just its

universal property. Thus, restrictions are limit-like.



COMPANIONS AND CONJOINTS [GPo04, §1.2,1.3]

Special cases are so-called companions f, and conjoints f*

fy Ya

B——— A A—— A

H restr lf fl ext H

87—>B B—— A
B f*

satisfying equations. Note: all restrictions and extensions constructed

from companions and conjoints [Shu08, Theorem 4.1]



COMPANIONS AND CONJOINTS EXAMPLES

Companion cells in Span:

_f

Y
o
v

>

X X
| f

X: —f>

\
<<
<< X
<<+— X

Companion and conjoint proarrows in Rel

(1,f) (f,1)

X — X XY X — Y xX

the graph and opgraph of given set function f: X — Y



EQUIPMENT EXAMPLES

See [GP04] and [Shu08] for 4/5 of these:
Span
Rel
Prof
Ring - [Par21, §2] for companions and conjoints
Mat(?)

others we’ll see in due course



NONEXAMPLES [GP04]

In quintets, not every arrow has a conjoint.
Let Dbl denote the double category whose
objects are double categories
arrows are lax functors
proarrows are oplax functors
cells are as defined in the reference

Then a lax double functor has a companion in Dbl if, and only if,

itis pseudo [GP04, Theorem 4.2]



CARTESIAN DOUBLE CATEGORIES



DEFINITION

A category & is cartesian if the functors & — 1land A: & — & x &

each have right adjoints.

The unit of A 4 x gives the internal diagonals:
Ny: X —> X xX
while the components of the counit maps are the projections:

EXy = (7‘()(,7'[y)2 (X XY, X x Y) — (X X Y)



DIAGRAMMATIC FORMULATION

& has binary products if, and only if, both equations hold:

EIAN

EXE —— &

AN - gy

c§’—>éa><é" E X E

Ex &

xgidx

These make sense in any 2-category. (Likewise for terminals.)



TWO 2-CATEGORIES

Dbl; denotes the 2-category of double categories, lax functors,
and transformations

Dbl denotes the 2-category of double categories, pseudo double

functors and transformations



DEFINITIONS [ALE18, §4.1, §4.2]

A double category D is precartesian if the double functors!: D — 1

and A: D — D x D have right adjoints in Dbl,.

A double category D is cartesian if it is precartesian and the right

adjoints are pseudo (that is, if A and ! have right adjoints in Dbl.)

What does it mean to be cartesian, practically?



DOUBLE ADJUNCTIONS [GP04, §3.1]

Adjunction between double functors F 4 G (with G potentially lax)
means (minimally)

Fo 4 Gg

Fp 4Gy
in a double-categorically coherent way.
Consequently, D (pre)cartesian implies Dy and D; each have finite
products (in a coherent way i.e. laxity and transformation properties

of units and counits).



CONSTRUCTION [ALE18, PROP 4.3.2]

Every cartesian equipment has finite products locally i.e. each hom
category D(A, B) has finite products.

Constructed as restrictions:

MAN

Projections are given by composing with given projection cellsin D;.

This generalizes the formula for local products in [CW8T].



EXAMPLE: LOCAL PRODUCTS IN RELATIONS

Form the intersection of the monics as on the left:

RS —1 s RAS - PA L Rxs
1 Y 4
d | = I
R— AXB AXB — AXAXBXxB
AAXAB

The square on the right then presents the restriction.



PROPOSITION [ALE18, PROPS. 3.4.13, 3.4.16, 4.1.2]

Suppose that
Dis an equipment
Dy has finite products
D has finite products locally (each cat D(A, B) has fin prods).

The category D; then has finite products and the assignments 1 — D
and D x D — D defined via these products are in fact lax double

functors right adjoint to ! and A respectively, i.e. D is precartesian.



PROPOSITION [ALE18, COR. 4.3.3]

Suppose that
D is an equipment
Dy has finite products
D has finite products locally
the resulting lax functors1 — D and D x D — D are pseudo.

The double category D is then a cartesian equipment.



DEFINITION [GP99, APPENDIX]

Alax functor F: X — D consists of two functors Fp: X¢g — Dg and

F1: Xy — D together with laxity comparison cells

Yrx M FN

FX —5 Fx FX — Fy s FZ

| o= |

FX —+— FX FX | s FZ
F(yx) F(M@N)

satisfying a number of equations.
oplax means the comparisons point the other way

pseudo means that each Fx and Fyy y is invertible



EXAMPLES

lax functors 1 — Span are precisely small categories
representables y: D°P — Span are in general lax [Par11]

Ob: Prof — Span taking the set of objects of a small category is
lax [Parll, §1.2]

Mon: MCat — Prof taking a monoidal category to the category
of monoids in it [GP04, §2.3, 2.4]



(PRE)CARTESIAN COMPARISON CELLS

If D is (pre)cartesian, the (lax) functor x: D x D — D comes with

comparison cells

P
AxB 28 aAxB AxB MN cup P EuF
|| | dwmes |
AmeAxB A X B M®P>E<N®Q s EXF

These are invertible when D is genuinely cartesian.



WHAT ARE THESE COMPARISON CELLS?

Whether D is just precartesian or genuinely cartesian, D; has finite
products and

d)A,B = <y7TA’ y7TB>

b, (e, = (M © TP, Ty © Q)
Follows from transformation conditions on unit and conunit of

adjunction A H x.



CARTESIAN EQUIPMENT EXAMPLES

(7, ®) monoidal but additionally cartesian
Ab
Slat

Span - [Alel8, Prop. 4.2.6]

Rel - [Lam22] directly but Rel = Mat(2) so also by below
Prof

Ring - can do this by hand

Mat(7) for 7 cartesian monoidal [Ale18, Prop 4.2.5]

But what about the others?

And is there a more systematic way to do these proofs?



SOME MAIN PLAYERS IN MORE DETAIL



TWO

Let 2 denote the double category with
one object e and no non-identity arrows
two proarrows

0:=y,
1

one non-identity cell0 <1

External compositionis V: 2 x 2 — 2.

Cartesian structureis A: 2 x 2 — 2.



RINGS AND BIMODULES [PAR21]

Let Ring denote the double category whose
objects are unital rings
morphisms are unital ring homomorphisms
proarrows are usual bimodules

cells are homomorphisms of abelian groups $: M — N



DOUBLE STRUCTURE OF RINGS AND BIMODULES

Every ring is a bimodule over itself = external unit
Tensor of bimodules (where defined) = external composition

Ring has all companions and conjoints = restriction and

extension of scalars [Par21, §2]

One can check by hand that Ring is cartesian using Aleiferi’s

criteria above



ORDERS AND IDEALS [CS86]

Let Idl denote the double category whose
objects are (pre)ordered sets (reflexive and transitive)
arrows are order-preserving maps (i.e. internal functors)
proarrows are ideals - relations /| — A x Bsuch that a’ <4 a and
alb and b <g b’ together imply da’Ib’

cells??? (Carboni & Street define a bicategory)



WHAT ARE THE CELLS?

For cells, options:
Mimic module definition explicitly
Rely on later abstract developments

Notice connection to [GP99, §3.3] - namely, the double category

of 2-enriched categories and profunctors



IDEALS ARE PROFUNCTORS

A 2-enriched profunctor is an order-preserving map P: A°P x B — 2.
These are called pre-order profunctors in [Gra20, §3.4.6].

Via 2-elements construction such a profunctor yields an ideal:
I := EW(P) = {(a,b) | P(a,b) = 1}
Check:ifa’ <4 aandalband b <g b/, then
Pla’,b") 22 P(a,b) 22 1

since P contravariant in 1st argument and covariant in 2nd.

Reverse construction just as easy.



CELLS, DEFINED

So, Idlis essentially pOrd from [GP99, §3.3], [Gra20, §3.4.6].
Cells are then certain 2-natural transformations.
This is an instance of another class of examples, namely, 7 -Prof for

suitably structured monoidal 7.
¥ = 2yields orders and ideals/order-profunctors
¥ = R4+ yields Lawvere metric space and metric profunctors

¥ = Ab yields preadditive categories and preadditive

profunctors

¥ = Setyields ordinary categories and profunctors



In general 7" needs a bit of structure:
monoidal
closed
cocomplete
(if not closed) tensor preserves colimits in each argument
In this case, ¥ -Prof
is a double category (coend formula for external composition)
is an equipment (we’ll see this later)

if 7 is cartesian, so is ¥ -Prof (also later).



SUPLATTICES [JT84, CH. 1]

A suplattice is a poset A for which each arbitrary subset S C Ahas a
supremum. A homomorphism of suplattices is an order- and

join-preserving function. Category denoted Slat.
Every homom f has a right adjoint f.y = \/{x | f(x) < y}
Slat finitely complete and cocomplete
Tensor A ® B makes Slat into a monoidal category.
closed; homs are sets of morphisms A — B with pointwise order
strong self-duality

x-autonomy



DOUBLE CATEGORY OF SUPLATTICES

Slat is the horizontal categorification of Slat with
one object
only identity arrows
a proarrow is a suplattice
a cell is a suplattice homomorphism.

This is not the bicategory of semilattices from [CW87].

Slat is finitely complete and tensor distributes over

products [JT84, Prop. 1.5.2]. So Slat is cartesian. It is an equipment
and is closed and has an involution as in [Shu08, §5.8, §10.1].



DOUB CATS OF FRAMES AND OF POINTLESS SPACES

Joyal & Tierney define frames and locales as certain monoids in the
monoidal category of suplattices [JT84, Chs. Il, ll]. Likewise they
define modules over such a monoid.
Looking for generalizations:

Frame =777

Loc=777
Since likely Loc = Frame®P it suffices to define the former.

What are these? Are they cartesian? Equipments?



Pattern:
objects are monoid-like
proarrows are module-like
composition is by certain stable colimits or coends

For this we need monoids and modules in a double category.



MONOIDS AND MODULES



LITERATURE AND TENDENTIOUS OPINIONS

monoids & modules appear (first?) in Leinster’s [Lei04] in context

of T-multicategories

utilized in [CS10] in context of virtual double categories (special

T-multicategories)

appear non-virtually in [Shu08] to show that many double

categories are nice equipments

virtual = correct (double presheaves form a virtual double

category [Parl1])

everything is a monoid?



DEFINITIONS

A monoid in a double category D is an endo-proarrow A: X —+ X
together with globular action u: A® A = Aand unitn: yy = Acells
satisfying the equations

H(H® ya) = ulys @ 1)

HM ® ya) = ya = wlys @m).
A homomorphism of such monoids consists of an arrow f: X — Y
and a cell ¢: A= Bwith source and target f satisfying

V(P ® ) = du

dn=eyr.

Let Mon(D) be the category of monoids and homomorphisms in D.



ASSOCIATIVITY CONDITION DIAGRAMATICALLY

A A A A A
IR I B .
A A ' A




EXAMPLES

A monoid in Span is a small category.

A monoid in Relis an ordered set.

A monoid in Abis a ring with 1.

A monoid in Mat(?') is a ¥ -category:
orders

Lawvere metric spaces

preadditive categories

A monoid Ain Slat satisfyinga < landa-a=aforalla € Aisa

frame, and conversely [JT84, §l11.1].



DEFINITIONS

A bimodule from a monoid A to one B consists of a proarrow
M: X - YandleftA\: A® M = Mandright p: M ® B = M globular
action cells satisfying

Aya®@AN) =Au® ym)

ple® yg) = plyy @)

PA® yg) = Alya @ p).



DEFINITIONS

A bimodule from a monoid A to one B consists of a proarrow
M: X - YandleftA\: A® M = Mandright p: M ® B = M globular
action cells satisfying
Aya®@AN) =Au® ym)
ple® yg) = plyy @)
PA® yg) = Alya @ p).
A modulation between bimodules Mand Nisacell 0: M = N where
AP ® 0) = 6A
p(O @) =0p



EXAMPLES

a bimodule in Ring is a usual bimodule; a modulation is a

properly bilinear map as in [Par21]

generally a bimodule in Mat(?) is a #"-profunctor



PROPOSITION

Monoids, modules, homomorphisms, and certain multicellsin a

double category D form a virtual double category Mod(D).



DEFINITION AND PROP [SHUO0S, §11.4, §11.10]

A double category D has local coequalizers if each category D(A, B)
has coequalizers and they are preserved by external composition in

each argument.

If D is an equipment with local coequalizers, then Mod(D) is a double

category and in fact an equipment.



EXAMPLES

Mod(Mat(?")) := ¥ -Prof - ¥ -categories and ¥ -profunctors
Met = Mod(Mat(R+))
Idl = Mod(Rel) = Mod(Mat(2))
Ring = Mod(Ab)
Mod(Span(&)) for finitely complete & - internal categories,
internal functors, internal profunctors
Prof = Mod(Span) = Mod(Mat(Set))
Mod(Span(Esp)) or Mod(Span(CGHaus)) - double spaces??
Mod(Span(Man)) - double manifolds?? (virtual!)

Mod(Mod(D)) - algebras and algebra bimodules



COMMENTS ON THE PROOF

Composition of modules defined via a coequalizer in D(A, C):
M&@BRN=M&N—McgN

Then for modulations8: M = Pand t: N = Q,

M®N M&N
do sl | e
_'P_>T M e

fIPREQg* M@gN
H coeq H fl restr lg H 3



THEOREM

If D is a cartesian equipment with local coequalizers, then Mod(D) is a

cartesian equipment.



PROOF COMMENTS

Use Aleiferi’s criteria:
isan equipment v’
0-part has products
has local products
laxators are invertible v/

Checkmarks: [Shu08, Prop. 11.10] proves the first one; last one:

laxators are induced from those of D.



PROOF COMMENTS

If (X,A, u,m) and (Y, B, v, €) are monoids in D, then the product in Dy,
namely,A x B: X x Y -+ X x Y has induced monoid structure.

Unit and multiplication:

Yxxy AxB AxB
REATaLO A AL
| cn= | | e
A T AGAXBRB | .
| e | | e
" TAxB ' AxB '

The can isos are the laxity cells given by the pairing of projections.



PROOF COMMENTS

canonical projections coequalize each side of the two required

monoid equations

consequently, these equations hold by uniqueness (that is,A x B
is a monoid)

universality by showing given projection and pairing morphisms
in D1 are monoid homomorphisms (again by a uniqueness

argument via projections)



PROOF COMMENTS
For bimodules M and N between monoids A + B, the local product

M A Nin Dy is abimodule. Left action induced:

A MAN A®(MAN)

X : > X > Y X ——— Y
S T
X x X A®M>E<A®N s Y xY A restr A
| |

XXX M>:<N > Y xY XXXWYXY

Likewise for the right action.



PROOF COMMENTS

again projections coequalize some required equations, but need

to take account of restrictions too!
so, uniqueness applied 2x to get the bimodule equations

again given projections and pairing morphisms for local

products in D are modulations

see this using uniqueness arguments once again



EXAMPLES

The following are thus all cartesian equipments:
Prof = Mod(Span) = Mod(Mat(Set))
Idl = Mod(Rel) = Mod(Mat(2))
Ring = Mod(Ab)
Mod(Slat) - monoids and modules in semilattices

DEsp := Mod(Span(Esp)) - double category of double spaces



DOUBLE CATEGORIES OF SPACES

Have sub-double category Frame — Mod(Slat) of frames,
homomorphisms and modules generalizing [JT84].
Likewise Loc := Frame®P.

To do:
A cell-theoretic definition of a frame

Stone Duality? That is, is Span(Esp) the right double category of

spaces for a Stone-type duality
0. Span(Esp) = Loc: pt

Descent theory for modules phrase purely double-theoretically?
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