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GOALS OF THE TALK

• Unpack the notion of a cartesian double category

• Discuss Examples

• Study a bit the notion of discreteness

• Convince you that cartesian double categories are interesting
and useful

• Exhibit a double category of pointless spaces



SOME HISTORY



CARTESIAN BICATEGORIES

• Carboni & Walters, Cartesian Bicategories (1987) [CW87]

1. When is a monoidal bicategory recognizably cartesian?
2. Examples: orders, partial maps, relations.
3. Which bicategories are≃ Rel(E ) for regular E ?
4. Centrality of functional completeness and discreteness.

• Carboni et. al., Cartesian Bicategories II (2008) [CKWW08]

1. Extend previous considerations to bicategories not
necessarily locally posetal (e.g. profunctors, spans)

2. Concept groupoidal replaces discreteness.



CARTESIAN DOUBLE CATEGORIES

• Eva Aleiferi, Cartesian Double Categories (2018) [Ale18]

1. Define the notion in the spirit of [CKWW08].
2. Which double cats are≃ Span(E ) for fin. compl. E ?

• M.L., Double Categories of Relations (2022) [Lam22]

1. Which double categories are≃ Rel(E ) for regular E ?
2. Equipment structure needed: The horizontal bicategory of

any cartesian equipment is a cartesian bicategory.
3. Consequently, discreteness as in [CW87].
4. Functional completeness in terms of tabulators.



FURTHER COMMENTS ON LITERATURE

• Carboni & Street, Order Ideals in Categories [CS86]

1. 2-category of orders and order-preserving maps
2. Bicategory of orders and ideals
3. These combine to form a double category. Is it cartesian?

• Number of interesting subsidiary results in [CW87]

1. Discrete objects in monoids in semilattices are Joyal and
Tierney’s discrete spaces [JT84, §4.2]

2. Discrete objects in the bicategory of orders and ideals are
precisely equivalence relations [CW87, Example 2.3(ii)].



DOUBLE CATEGORY BASICS



DEFINITION
A double categoryD is a (pseudo) category in Cat.

1. D0 is the category of objects and ordinary arrows f : A→ B.

2. D1 is the category of proarrowsM : A −7−→ B and cells:

A B

C D

Mp
f

N
p

gϕ

3. source, target, unit functors src, tgt : D1 ⇒ D0, y : D0 → D1

4. external composition for proarrowsM⊗ N and cellsϕ⊗ψ
(diagrammatic, associative up to coherent iso)



EXAMPLES
Old friends:

• Q(K) - quintets in K a 2-category

• (V ,⊗) - one object double category on a monoidal category

• B - bicategory as a double category with only identity arrows

• Span - sets, functions, spans

• Rel - sets, functions, relations

• Mat(V ) - sets, functions, and V -matrices

• Ring - rings (with unit), (unital) homomorphisms, bimodules

• Prof - categories, functors, profunctors

• Met - (Lawvere) metric spaces and metric profunctors



SPANS IN SOME DETAIL

• objects are sets

• morphisms are set functions f : X → Y

• a proarrow X −7−→ Y is a span X ← S→ Y

• a cell is a span morphism

X S Y

W T W

f α g

• external units are identity spans X 1X←− X 1X−→ X



SPANS IN FURTHER DETAIL

Span composition is by pullback

S×Y T T V

S Y

X

⌟

Associators induced by universal property of pullbacks; these satisfy a
coherence condition.



EXAMPLES CONTINUED

New (?) acquaintances:

• 2 - ordinal double category

• Idl(E ) - orders and ideals in regular E

• Slat - semilatices and modules

• Frame - frames and modules

• Loc - locales and modules

• DEsp - 2-/double spaces and modules

• Mod(D) - monoids and modules for suitable D

More on these in due course.



DEFINITION [SHU08, §4]

A double category D is an equipment if the source-target projection
⟨src, tgt⟩ : D1 → D0 × D0 is equivalently

• a fibration

• an opfibration

• a bifibration.

Elsewhere these have been called framed bicategories [Shu08],
fibrant double categories [Ale18] and gregarious double
categories [DPP10]. The name equipment recalls Richard Wood’s
proarrow equipment [Woo82]



NICHES AND CONICHES
1. every niche completes to a cartesian cell

A B A B

C D C D

gf

N
p

f

N
p

g

f !Ng∗p
restr⇝

2. every coniche completes to an opcartesian cell

A B A B

C D C D

gf f

f∗Mg!
p

g

MpMp
ext⇝



CARTESIAN UNIVERSAL PROPERTY

For any such cell α, there exists a unique globular cell satisfying:

· · · ·

· · =

· · · ·

Mp
kh

f !Ng∗
p

f

N
p

g
fh

N
p

Mp

gk

restr

∃!
α

Dually for extension cells.



EXAMPLE

In relations, a niche is equivalently a corner as at left:

M

N f !Ng∗ N

A× B C× D A× B C× D
f×g

⟨d,c⟩ ⟨d,c⟩

f×g

⌟

∃!

The restriction is formed as the pullback, and cartesian is just its
universal property. Thus, restrictions are limit-like.



COMPANIONS AND CONJOINTS [GP04, §1.2, 1.3]
Special cases are so-called companions f ! and conjoints f∗

A B A A

B B A B

B A A A

B B B A

f !p
f

yB
p

f !
p

yAp
f

yB
p

f∗p
f f

f∗
p

yAp

restr ext

restr ext

satisfying equations. Note: all restrictions and extensions constructed
from companions and conjoints [Shu08, Theorem 4.1]



COMPANIONS AND CONJOINTS EXAMPLES

• Companion cells in Span:

X X Y X X X

Y Y Y X X Y

f

f f f

f

• Companion and conjoint proarrows in Rel

X X × Y X Y × X
⟨1, f⟩ ⟨ f ,1⟩

the graph and opgraph of given set function f : X → Y



EQUIPMENT EXAMPLES

See [GP04] and [Shu08] for 4/5 of these:

• Span

• Rel

• Prof

• Ring - [Par21, §2] for companions and conjoints

• Mat(V )

• others we’ll see in due course



NONEXAMPLES [GP04]

1. In quintets, not every arrow has a conjoint.

2. Let Dbl denote the double category whose

– objects are double categories
– arrows are lax functors
– proarrows are oplax functors
– cells are as defined in the reference

Then a lax double functor has a companion in Dbl if, and only if,
it is pseudo [GP04, Theorem 4.2]



CARTESIAN DOUBLE CATEGORIES



DEFINITION

A category E is cartesian if the functors E → 1 and∆ : E → E × E

each have right adjoints.
The unit of∆ ⊣ × gives the internal diagonals:

ηX : X → X × X

while the components of the counit maps are the projections:

ϵX,Y = (πX ,πY ) : (X × Y , X × Y)→ (X × Y)



DIAGRAMMATIC FORMULATION

E has binary products if, and only if, both equations hold:

E × E E E × E

E × E E E

E E E

E E × E E × E

×

∆

×

∆

×

∆

×

∆

×

∆

ϵ η

η ϵ

1

1

=

=

These make sense in any 2-category. (Likewise for terminals.)



TWO 2-CATEGORIES

• Dbll denotes the 2-category of double categories, lax functors,
and transformations

• Dbl denotes the 2-category of double categories, pseudo double
functors and transformations



DEFINITIONS [ALE18, §4.1, §4.2]

A double category D is precartesian if the double functors ! : D→ 1
and∆ : D→ D× D have right adjoints in Dbll .

A double category D is cartesian if it is precartesian and the right
adjoints are pseudo (that is, if∆ and ! have right adjoints in Dbl.)

What does it mean to be cartesian, practically?



DOUBLE ADJUNCTIONS [GP04, §3.1]

Adjunction between double functors F ⊣ G (with G potentially lax)
means (minimally)

• F0 ⊣ G0

• F1 ⊣ G1

in a double-categorically coherent way.
Consequently, D (pre)cartesian implies D0 and D1 each have finite
products (in a coherent way i.e. laxity and transformation properties
of units and counits).



CONSTRUCTION [ALE18, PROP 4.3.2]

Every cartesian equipment has finite products locally i.e. each hom
category D(A,B) has finite products.
Constructed as restrictions:

A B A B

1 1 A× A B× B
!!

y1
p

M∧Np
∆

M×Np

∆

⊤p
restrrestr

Projections are given by composing with given projection cells in D1.
This generalizes the formula for local products in [CW87].



EXAMPLE: LOCAL PRODUCTS IN RELATIONS

Form the intersection of the monics as on the left:

R ∩ S S R ∩ S R× S

R A× B A× B A× A× B× B

q

p
⌟

⟨ p,q⟩

∆A×∆B

⌟

The square on the right then presents the restriction.



PROPOSITION [ALE18, PROPS. 3.4.13, 3.4.16, 4.1.2]

Suppose that

• D is an equipment

• D0 has finite products

• D has finite products locally (each cat D(A,B) has fin prods).

The category D1 then has finite products and the assignments 1→ D

and D× D→ D defined via these products are in fact lax double
functors right adjoint to ! and∆ respectively, i.e. D is precartesian.



PROPOSITION [ALE18, COR. 4.3.3]

Suppose that

• D is an equipment

• D0 has finite products

• D has finite products locally

• the resulting lax functors 1→ D and D× D→ D are pseudo.

The double category D is then a cartesian equipment.



DEFINITION [GP99, APPENDIX]

A lax functor F : X→ D consists of two functors F0 : X0 → D0 and
F1 : X1 → D1 together with laxity comparison cells

FX FX FX FY FZ

FX FX FX FZ

yFXp

F( yX )
p

FNpFMp

F(M⊗N)
p

FM,NFX

satisfying a number of equations.
oplaxmeans the comparisons point the other way
pseudomeans that each FX and FM,N is invertible



EXAMPLES

• lax functors 1→ Span are precisely small categories

• representables y : Do p → Span are in general lax [Par11]

• Ob : Prof → Span taking the set of objects of a small category is
lax [Par11, §1.2]

• Mon : MCat→ Prof taking a monoidal category to the category
of monoids in it [GP04, §2.3, 2.4]



(PRE)CARTESIAN COMPARISON CELLS

If D is (pre)cartesian, the (lax) functor× : D× D→ D comes with
comparison cells

A× B A× B A× B C× D E × F

A× B A× B A× B E × F

M×Np P×Qp

M⊗P×N⊗Qp

yA×Bp

yA× yB
p

ϕ(M,N),(P,Q)ϕA,B

These are invertible when D is genuinely cartesian.



WHAT ARE THESE COMPARISON CELLS?

Whether D is just precartesian or genuinely cartesian, D1 has finite
products and

• ϕA,B = ⟨ yπA , yπB⟩

• ϕ(M,N),(P,Q) = ⟨πM ⊗ πP,πN ⊗ πQ⟩

Follows from transformation conditions on unit and conunit of
adjunction∆ ⊣ ×.



CARTESIAN EQUIPMENT EXAMPLES
• (V ,⊗) monoidal but additionally cartesian

1. Ab

2. Slat

• Span - [Ale18, Prop. 4.2.6]

• Rel - [Lam22] directly but Rel ∼= Mat(2) so also by below

• Prof

• Ring - can do this by hand

• Mat(V ) for V cartesian monoidal [Ale18, Prop 4.2.5]

But what about the others?
And is there a more systematic way to do these proofs?



SOME MAIN PLAYERS IN MORE DETAIL



TWO

Let 2 denote the double category with

• one object • and no non-identity arrows

• two proarrows

1. 0 := y•
2. 1

• one non-identity cell 0 ≤ 1

External composition is∨ : 2× 2→ 2.
Cartesian structure is∧ : 2× 2→ 2.



RINGS AND BIMODULES [PAR21]
Let Ring denote the double category whose

• objects are unital rings

• morphisms are unital ring homomorphisms

• proarrows are usual bimodules

• cells are homomorphisms of abelian groupsϕ : M→ N

A B

C D

Mp
gf

N
p

ϕ

such that f (a)ϕ(m) = ϕ(am) andϕ(m)g(b) = ϕ(mb).



DOUBLE STRUCTURE OF RINGS AND BIMODULES

• Every ring is a bimodule over itself = external unit

• Tensor of bimodules (where defined) = external composition

• Ring has all companions and conjoints = restriction and
extension of scalars [Par21, §2]

• One can check by hand that Ring is cartesian using Aleiferi’s
criteria above



ORDERS AND IDEALS [CS86]

Let Idl denote the double category whose

• objects are (pre)ordered sets (reflexive and transitive)

• arrows are order-preserving maps (i.e. internal functors)

• proarrows are ideals – relations I→ A× B such that a′ ≤A a and
aIb and b ≤B b′ together imply a′Ib′

• cells??? (Carboni & Street define a bicategory)



WHAT ARE THE CELLS?

For cells, options:

1. Mimic module definition explicitly

2. Rely on later abstract developments

3. Notice connection to [GP99, §3.3] – namely, the double category
of 2-enriched categories and profunctors



IDEALS ARE PROFUNCTORS
A 2-enriched profunctor is an order-preserving map P : Ao p × B→ 2.
These are called pre-order profunctors in [Gra20, §3.4.6].
Via 2-elements construction such a profunctor yields an ideal:

I := Elt(P) = {(a, b) | P(a, b) = 1}

Check: if a′ ≤A a and aIb and b ≤B b′, then

P(a′, b′) ≥2 P(a, b) ≥2 1

since P contravariant in 1st argument and covariant in 2nd.
Reverse construction just as easy.



CELLS, DEFINED

So, Idl is essentially pOrd from [GP99, §3.3], [Gra20, §3.4.6].
Cells are then certain 2-natural transformations.
This is an instance of another class of examples, namely, V -Prof for
suitably structured monoidal V .

1. V = 2 yields orders and ideals/order-profunctors

2. V = R+ yields Lawvere metric space and metric profunctors

3. V = Ab yields preadditive categories and preadditive
profunctors

4. V = Set yields ordinary categories and profunctors



In general V needs a bit of structure:

• monoidal

• closed

• cocomplete

• (if not closed) tensor preserves colimits in each argument

In this case, V -Prof

• is a double category (coend formula for external composition)

• is an equipment (we’ll see this later)

• if V is cartesian, so is V -Prof (also later).



SUPLATTICES [JT84, CH. I]

A suplattice is a poset A for which each arbitrary subset S ⊂ A has a
supremum. A homomorphism of suplattices is an order- and
join-preserving function. Category denoted Slat.

• Every homom f has a right adjoint f∗ y =
∨

{x | f (x) ≤ y}

• Slat finitely complete and cocomplete

• Tensor A⊗ Bmakes Slat into a monoidal category.

• closed; homs are sets of morphisms A→ Bwith pointwise order

• strong self-duality

• ∗-autonomy



DOUBLE CATEGORY OF SUPLATTICES

Slat is the horizontal categorification of Slatwith

• one object

• only identity arrows

• a proarrow is a suplattice

• a cell is a suplattice homomorphism.

This is not the bicategory of semilattices from [CW87].
Slat is finitely complete and tensor distributes over
products [JT84, Prop. I.5.2]. So Slat is cartesian. It is an equipment
and is closed and has an involution as in [Shu08, §5.8, §10.1].



DOUB CATS OF FRAMES AND OF POINTLESS SPACES

Joyal & Tierney define frames and locales as certainmonoids in the
monoidal category of suplattices [JT84, Chs. II, III]. Likewise they
define modules over such a monoid.
Looking for generalizations:

• Frame = ???

• Loc = ???

Since likely Loc = Frameo p it suffices to define the former.
What are these? Are they cartesian? Equipments?



Pattern:

1. objects are monoid-like

2. proarrows are module-like

3. composition is by certain stable colimits or coends

For this we need monoids and modules in a double category.



MONOIDS AND MODULES



LITERATURE AND TENDENTIOUS OPINIONS

• monoids & modules appear (first?) in Leinster’s [Lei04] in context
of T-multicategories

• utilized in [CS10] in context of virtual double categories (special
T-multicategories)

• appear non-virtually in [Shu08] to show that many double
categories are nice equipments

• virtual = correct (double presheaves form a virtual double
category [Par11])

• everything is a monoid?



DEFINITIONS
Amonoid in a double category D is an endo-proarrow A : X −7−→ X

together with globular action µ : A⊗ A⇒ A and unit η : yX ⇒ A cells
satisfying the equations

1. µ(µ⊗ yA) = µ( yA ⊗ µ) a(a′a′′) = (aa′)a′′

2. µ(η⊗ yA) = yA = µ( yA ⊗ η). 1a = a = a1

A homomorphism of such monoids consists of an arrow f : X → Y

and a cellϕ : A⇒ Bwith source and target f satisfying

1. ν(ϕ⊗ ϕ) = ϕµ ϕ(a) · ϕ(a′) = ϕ(a · a′)

2. ϕη = ϵ y f . ϕ(1) = 1

LetMon(D) be the category of monoids and homomorphisms in D.



ASSOCIATIVITY CONDITION DIAGRAMATICALLY

· · · · · · · ·

· · · · · ·

· · · ·

Ap Ap

A
p

Ap

A
p

A
p

Ap Ap Ap

A
p

A
p

A
p

=

µ

yA µ yA

µ

µ



EXAMPLES

• A monoid in Span is a small category.

• A monoid in Rel is an ordered set.

• A monoid in Ab is a ring with 1.

• A monoid in Mat(V ) is a V -category:

1. orders
2. Lawvere metric spaces
3. preadditive categories

• A monoid A in Slat satisfying a ≤ 1 and a · a = a for all a ∈ A is a
frame, and conversely [JT84, §III.1].



DEFINITIONS

A bimodule from a monoid A to one B consists of a proarrow
M : X −7−→ Y and left λ : A⊗ M⇒ M and right ρ : M⊗ B⇒ M globular
action cells satisfying

1. λ( yA ⊗ λ) = λ(µ⊗ yM) a · (a′ ·m) = (aa′) ·m

2. ρ(ρ⊗ yB) = ρ( yM ⊗ ν) (m · b) · b′ = m · (bb′)

3. ρ(λ⊗ yB) = λ( yA ⊗ ρ). (a ·m) · b = a · (m · b)

Amodulation between bimodulesM and N is a cell θ : M⇒ Nwhere

1. λ(ϕ⊗ θ) = θλ ϕ(a) · θ(m) = θ(a ·m)

2. ρ(θ⊗ψ) = θρ θ(m) ·ψ(b) = θ(m · b)



DEFINITIONS

A bimodule from a monoid A to one B consists of a proarrow
M : X −7−→ Y and left λ : A⊗ M⇒ M and right ρ : M⊗ B⇒ M globular
action cells satisfying

1. λ( yA ⊗ λ) = λ(µ⊗ yM) a · (a′ ·m) = (aa′) ·m

2. ρ(ρ⊗ yB) = ρ( yM ⊗ ν) (m · b) · b′ = m · (bb′)

3. ρ(λ⊗ yB) = λ( yA ⊗ ρ). (a ·m) · b = a · (m · b)

Amodulation between bimodulesM and N is a cell θ : M⇒ Nwhere

1. λ(ϕ⊗ θ) = θλ ϕ(a) · θ(m) = θ(a ·m)

2. ρ(θ⊗ψ) = θρ θ(m) ·ψ(b) = θ(m · b)



EXAMPLES

• a bimodule in Ring is a usual bimodule; a modulation is a
properly bilinear map as in [Par21]

• generally a bimodule in Mat(V ) is a V -profunctor



PROPOSITION

Monoids, modules, homomorphisms, and certain multicells in a
double category D form a virtual double category Mod(D).

A virtual double category is a category equipped proarrows and
further cells with multi-sources. Cells compose like in operads or
multicategories, but not externally as in a double category.



DEFINITION AND PROP [SHU08, §11.4, §11.10]

A double category D has local coequalizers if each category D(A,B)
has coequalizers and they are preserved by external composition in
each argument.

If D is an equipment with local coequalizers, then Mod(D) is a double
category and in fact an equipment.



EXAMPLES
• Mod(Mat(V )) := V -Prof - V -categories and V -profunctors

1. Met ∼= Mod(Mat(R+))
2. Idl ∼= Mod(Rel) ∼= Mod(Mat(2))
3. Ring ∼= Mod(Ab)

• Mod(Span(E )) for finitely complete E - internal categories,
internal functors, internal profunctors

1. Prof ∼= Mod(Span) ∼= Mod(Mat(Set))
2. Mod(Span(Esp)) or Mod(Span(CGHaus)) - double spaces??
3. Mod(Span(Man)) - double manifolds?? (virtual!)

• Mod(Mod(D)) - algebras and algebra bimodules



COMMENTS ON THE PROOF
Composition of modules defined via a coequalizer in D(A, C):

M⊗ B⊗ N⇒ M⊗ N→ M⊗B N

Then for modulations θ : M⇒ P and τ : N⇒ Q,

· · · · · · ·

· · · · · · ·

· · · · · ·

P
p

Q
p

Mp Np
gf

P⊗EQ
p

f !P⊗EQg∗
p

M⊗Np

f

P⊗EQ
p

g

⇝

M⊗Np

M⊗BN
p

P⊗EQ
p

⇝

θ τ

coeq restr

∃! coeq

∃!



THEOREM

If D is a cartesian equipment with local coequalizers, then Mod(D) is a
cartesian equipment.

NB: there’s almost certainly a finer analysis to be done here.
You can see some further proof details at
https://michaeljlambert.github.io/draft(6June2023).pdf



PROOF COMMENTS

Use Aleiferi’s criteria:

1. is an equipment✓

2. 0-part has products

3. has local products

4. laxators are invertible✓

Checkmarks: [Shu08, Prop. 11.10] proves the first one; last one:
laxators are induced from those of D.



PROOF COMMENTS

If (X, A,µ,η) and (Y ,B,ν, ϵ) are monoids in D, then the product in D1,
namely, A× B : X × Y −7−→ X × Y has induced monoid structure.
Unit and multiplication:

· · · · ·

· · · ·

· · · ·

yX×Yp

A×Bp

yX× yY
p

A×Bp A×Bp

A×Bp

A⊗A×B⊗Bp
can∼=

η×ϵ µ×ν

can∼=

The can isos are the laxity cells given by the pairing of projections.



PROOF COMMENTS

• canonical projections coequalize each side of the two required
monoid equations

• consequently, these equations hold by uniqueness (that is, A× B
is a monoid)

• universality by showing given projection and pairing morphisms
in D1 are monoid homomorphisms (again by a uniqueness
argument via projections)



PROOF COMMENTS
For bimodulesM and N between monoids A −7−→ B, the local product
M ∧ N in D1 is a bimodule. Left action induced:

X X Y X Y

X × X X × X Y × Y X Y

X × X Y × Y

X × X Y × Y X × X Y × Y

M∧Np

M×Np

∆

A×Ap

∆

Ap

A⊗M×A⊗Np

M×Np

M∧Np

∆

M×Np

∆

=

A⊗(M∧N)p
restr

∼=

λM×λN

∆

restr

∃!

Likewise for the right action.



PROOF COMMENTS

• again projections coequalize some required equations, but need
to take account of restrictions too!

• so, uniqueness applied 2x to get the bimodule equations

• again given projections and pairing morphisms for local
products in D are modulations

• see this using uniqueness arguments once again



EXAMPLES

The following are thus all cartesian equipments:

• Prof ∼= Mod(Span) ∼= Mod(Mat(Set))

• Idl ∼= Mod(Rel) ∼= Mod(Mat(2))

• Ring ∼= Mod(Ab)

• Mod(Slat) - monoids and modules in semilattices

• DEsp := Mod(Span(Esp)) - double category of double spaces



DOUBLE CATEGORIES OF SPACES
Have sub-double category Frame ↪→ Mod(Slat) of frames,
homomorphisms and modules generalizing [JT84].
Likewise Loc := Frameo p.
To do:

1. A cell-theoretic definition of a frame

2. Stone Duality? That is, is Span(Esp) the right double category of
spaces for a Stone-type duality

O : Span(Esp)⇄ Loc : pt

3. Descent theory for modules phrase purely double-theoretically?
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