A CARTESIAN EQUIPMENT BESTIARY

Michael Lambert

June 2023

FMCS 2023

GOALS OF THE TALK

- Unpack the notion of a cartesian double category
- Discuss Examples
- Study a bit the notion of discreteness
- Convince you that cartesian double categories are interesting and useful
- Exhibit a double category of pointless spaces

SOME HISTORY

CARTESIAN BICATEGORIES

- Carboni \& Walters, Cartesian Bicategories (1987) [CW87]

1. When is a monoidal bicategory recognizably cartesian?
2. Examples: orders, partial maps, relations.
3. Which bicategories are $\simeq \operatorname{Rel}(\mathscr{E})$ for regular \mathscr{E} ?
4. Centrality of functional completeness and discreteness.

- Carboni et. al., Cartesian Bicategories II (2008) [CKWW08]

1. Extend previous considerations to bicategories not necessarily locally posetal (e.g. profunctors, spans)
2. Concept groupoidal replaces discreteness.

CARTESIAN DOUBLE CATEGORIES

- Eva Aleiferi, Cartesian Double Categories (2018) [Ale18]

1. Define the notion in the spirit of [CKWW08].
2. Which double cats are $\simeq \operatorname{Span}(\mathscr{E})$ for fin. compl. \mathscr{E} ?

- M.L., Double Categories of Relations (2022) [Lam22]

1. Which double categories are $\simeq \operatorname{Rel}(\mathscr{E})$ for regular \mathscr{E} ?
2. Equipment structure needed: The horizontal bicategory of any cartesian equipment is a cartesian bicategory.
3. Consequently, discreteness as in [CW87].
4. Functional completeness in terms of tabulators.

FURTHER COMMENTS ON LITERATURE

- Carboni \& Street, Order Ideals in Categories [CS86]

1. 2-category of orders and order-preserving maps
2. Bicategory of orders and ideals
3. These combine to form a double category. Is it cartesian?

- Number of interesting subsidiary results in [CW87]

1. Discrete objects in monoids in semilattices are Joyal and Tierney's discrete spaces [JT84, §4.2]
2. Discrete objects in the bicategory of orders and ideals are precisely equivalence relations [CW87, Example 2.3(ii)].

DOUBLE CATEGORY BASICS

DEFINITION

A double category \mathbb{D} is a (pseudo) category in Cat.

1. \mathbb{D}_{0} is the category of objects and ordinary arrows $f: A \rightarrow B$.
2. \mathbb{D}_{1} is the category of proarrows $M: A \rightarrow B$ and cells:

$$
\begin{aligned}
& A \xrightarrow{M} B \\
& f \downarrow \quad \phi \quad \downarrow g \\
& \text { C } \underset{N}{\underset{N}{L}} D
\end{aligned}
$$

3. source, target, unit functors src, tgt: $\mathbb{D}_{1} \rightrightarrows \mathbb{D}_{0}, y: \mathbb{D}_{0} \rightarrow \mathbb{D}_{1}$
4. external composition for proarrows $M \otimes N$ and cells $\phi \otimes \psi$ (diagrammatic, associative up to coherent iso)

EXAMPLES

Old friends:

- $\mathbb{Q}(\mathcal{K})$ - quintets in \mathcal{K} a 2 -category
- $(\sqrt[V]{V}, \otimes)$ - one object double category on a monoidal category
- B- bicategory as a double category with only identity arrows
- Span - sets, functions, spans
- Rel - sets, functions, relations
- Mat (\mathscr{V}) - sets, functions, and \mathscr{V}-matrices
- Ring - rings (with unit), (unital) homomorphisms, bimodules
- Prof - categories, functors, profunctors
- Met - (Lawvere) metric spaces and metric profunctors

SPANS IN SOME DETAIL

- objects are sets
- morphisms are set functions $f: X \rightarrow Y$
- a proarrow $X \rightarrow Y$ is a span $X \leftarrow S \rightarrow Y$
- a cell is a span morphism

- external units are identity spans $X \stackrel{1_{X}}{\leftarrow} X \xrightarrow{1_{X}} X$

SPANS IN FURTHER DETAIL

Span composition is by pullback

Associators induced by universal property of pullbacks; these satisfy a coherence condition.

EXAMPLES CONTINUED

New (?) acquaintances:

- 2- ordinal double category
- Idl($\mathscr{E})$ - orders and ideals in regular \mathscr{E}
- Slat - semilatices and modules
- Frame - frames and modules
- Loc - locales and modules
- DEsp - 2-/double spaces and modules
- $\operatorname{Mod}(\mathbb{D})$ - monoids and modules for suitable \mathbb{D}

More on these in due course.

DEFINITION [SHU08, §4]

A double category \mathbb{D} is an equipment if the source-target projection
\langle src, tgt $\rangle: \mathbb{D}_{1} \rightarrow \mathbb{D}_{0} \times \mathbb{D}_{0}$ is equivalently

- a fibration
- an opfibration
- a bifibration.

Elsewhere these have been called framed bicategories [Shu08], fibrant double categories [Ale18] and gregarious double categories [DPP10]. The name equipment recalls Richard Wood's proarrow equipment [Woo82]

NICHES AND CONICHES

1. every niche completes to a cartesian cell

2. every coniche completes to an opcartesian cell

$A \xrightarrow{M} B$
$f \downarrow$
$C \xrightarrow[f^{*} M g!]{\downarrow} D$

CARTESIAN UNIVERSAL PROPERTY

For any such cell α, there exists a unique globular cell satisfying:

Dually for extension cells.

EXAMPLE

In relations, a niche is equivalently a corner as at left:

The restriction is formed as the pullback, and cartesian is just its universal property. Thus, restrictions are limit-like.

COMPANIONS AND CONJOINTS [GP04, §1.2, 1.3]

Special cases are so-called companions $f_{!}$and conjoints f^{*}

$$
A \xrightarrow{y_{A}} A
$$

$$
\| \text { ext } \downarrow f
$$

$$
A \xrightarrow[f_{!}]{\longrightarrow} B
$$

$$
B \xrightarrow{f^{*}} A
$$

$$
A \xrightarrow{y_{A}} A
$$

$$
\| \text { restr } \downarrow f
$$

$$
f \downarrow \text { ext } \|
$$

$$
B \underset{y_{B}}{y_{B}} B
$$

$$
B \underset{f^{*}}{\stackrel{+}{\longrightarrow}} A
$$

$$
\begin{aligned}
& A \xrightarrow{\stackrel{f}{!}} B \\
& f \downarrow \text { restr } \| \\
& B \xrightarrow[y_{B}]{y_{B}} B
\end{aligned}
$$

satisfying equations. Note: all restrictions and extensions constructed from companions and conjoints [Shu08, Theorem 4.1]

COMPANIONS AND CONJOINTS EXAMPLES

- Companion cells in Span:

- Companion and conjoint proarrows in Rel

$$
X \xrightarrow{\langle 1, f\rangle} X \times Y \quad X \xrightarrow{\langle f, 1\rangle} Y \times X
$$

the graph and opgraph of given set function $f: X \rightarrow Y$

EQUIPMENT EXAMPLES

See [GP04] and [Shu08] for 4/5 of these:

- Span
- Rel
- Prof
- Ring - [Par21, §2] for companions and conjoints
- $\operatorname{Mat}(\sqrt[V]{ })$
- others we'll see in due course

NONEXAMPLES [GP04]

1. In quintets, not every arrow has a conjoint.
2. Let $\mathbb{D} \mathbf{b}$ denote the double category whose

- objects are double categories
- arrows are lax functors
- proarrows are oplax functors
- cells are as defined in the reference

Then a lax double functor has a companion in $\mathbb{D} \mathbf{b}$ if, and only if, it is pseudo [GP04, Theorem 4.2]

CARTESIAN DOUBLE CATEGORIES

DEFINITION

A category \mathscr{E} is cartesian if the functors $\mathscr{E} \rightarrow 1$ and $\Delta: \mathscr{E} \rightarrow \mathscr{E} \times \mathscr{E}$ each have right adjoints.
The unit of $\Delta \dashv \times$ gives the internal diagonals:

$$
\eta_{X}: X \rightarrow X \times X
$$

while the components of the counit maps are the projections:

$$
\epsilon_{X, Y}=\left(\pi_{X}, \pi_{Y}\right):(X \times Y, X \times Y) \rightarrow(X \times Y)
$$

DIAGRAMMATIC FORMULATION

\mathscr{E} has binary products if, and only if, both equations hold:

$$
=\quad \begin{gathered}
\Delta(\underset{\mathscr{E}}{\Rightarrow})_{2} \\
\mathscr{E} \times \mathscr{E}
\end{gathered}
$$

These make sense in any 2-category. (Likewise for terminals.)

TWO 2-CATEGORIES

- Dbll denotes the 2-category of double categories, lax functors, and transformations
- Dbl denotes the 2-category of double categories, pseudo double functors and transformations

DEFINITIONS [ALE18, §4.1, §4.2]

A double category \mathbb{D} is precartesian if the double functors !: $\mathbb{D} \rightarrow 1$ and $\Delta: \mathbb{D} \rightarrow \mathbb{D} \times \mathbb{D}$ have right adjoints in $\mathbf{D b l}_{/}$.

A double category \mathbb{D} is cartesian if it is precartesian and the right adjoints are pseudo (that is, if Δ and ! have right adjoints in Dbl.)

What does it mean to be cartesian, practically?

DOUBLE ADJUNCTIONS [GP04, §3.1]

Adjunction between double functors $F \dashv G$ (with G potentially lax) means (minimally)

- $F_{0} \dashv G_{0}$
- $F_{1} \dashv G_{1}$
in a double-categorically coherent way.
Consequently, \mathbb{D} (pre)cartesian implies \mathbb{D}_{0} and \mathbb{D}_{1} each have finite products (in a coherent way i.e. laxity and transformation properties of units and counits).

CONSTRUCTION [ALE18, PROP 4.3.2]

Every cartesian equipment has finite products locally i.e. each hom category $\mathbb{D}(A, B)$ has finite products.

Constructed as restrictions:
$A \xrightarrow{T} B$

$1 \xrightarrow[y_{1}]{\stackrel{y}{l}} 1$

$$
A \xrightarrow{M \wedge N} B
$$

$A \times A \xrightarrow[M \times N]{+} B \times B$

Projections are given by composing with given projection cells in \mathbb{D}_{1}.
This generalizes the formula for local products in [CW87].

EXAMPLE: LOCAL PRODUCTS IN RELATIONS

Form the intersection of the monics as on the left:

The square on the right then presents the restriction.

PROPOSITION [ALE18, PROPS. 3.4.13, 3.4.16, 4.1.2]

Suppose that

- D is an equipment
- \mathbb{D}_{0} has finite products
- \mathbb{D} has finite products locally (each cat $\mathbb{D}(A, B)$ has fin prods).

The category \mathbb{D}_{1} then has finite products and the assignments $1 \rightarrow \mathbb{D}$ and $\mathbb{D} \times \mathbb{D} \rightarrow \mathbb{D}$ defined via these products are in fact lax double functors right adjoint to ! and Δ respectively, i.e. \mathbb{D} is precartesian.

PROPOSITION [ALE18, COR. 4.3.3]

Suppose that

- \mathbb{D} is an equipment
- \mathbb{D}_{0} has finite products
- D has finite products locally
- the resulting lax functors $1 \rightarrow \mathbb{D}$ and $\mathbb{D} \times \mathbb{D} \rightarrow \mathbb{D}$ are pseudo.

The double category \mathbb{D} is then a cartesian equipment.

DEFINITION [GP99, APPENDIX]

A lax functor $F: \mathcal{X} \rightarrow \mathbb{D}$ consists of two functors $F_{0}: X_{0} \rightarrow \mathbb{D}_{0}$ and
$F_{1}: \mathfrak{X}_{1} \rightarrow \mathbb{D}_{1}$ together with laxity comparison cells

$$
\stackrel{F X \xrightarrow{F X} \underset{F X}{{ }_{F X}} \|_{F\left(y_{x}\right)}^{y_{F X}} F X}{ }
$$

$$
\begin{aligned}
& F X \xrightarrow{F M} F Y \xrightarrow{F N} F Z \\
& \| \quad F_{M, N} \\
& F X \xrightarrow[F(M \otimes N)]{\stackrel{\prime}{\prime}} F Z
\end{aligned}
$$

satisfying a number of equations.
oplax means the comparisons point the other way
pseudo means that each F_{X} and $F_{M, N}$ is invertible

EXAMPLES

- lax functors $1 \rightarrow$ Span are precisely small categories
- representables $y: \mathbb{D}^{o p} \rightarrow$ Span are in general lax [Par11]
- Ob: Prof \rightarrow Span taking the set of objects of a small category is lax [Par11, §1.2]
- Mon: MCat \rightarrow Prof taking a monoidal category to the category of monoids in it [GP04, §2.3, 2.4]

(PRE)CARTESIAN COMPARISON CELLS

If \mathbb{D} is (pre)cartesian, the (lax) functor $\times: \mathbb{D} \times \mathbb{D} \rightarrow \mathbb{D}$ comes with comparison cells

These are invertible when \mathbb{D} is genuinely cartesian.

WHAT ARE THESE COMPARISON CELLS?

Whether \mathbb{D} is just precartesian or genuinely cartesian, \mathbb{D}_{1} has finite products and

- $\phi_{A, B}=\left\langle y_{\pi_{A}}, y_{\pi_{B}}\right\rangle$
- $\phi_{(M, N),(P, Q)}=\left\langle\pi_{M} \otimes \pi_{P}, \pi_{N} \otimes \pi_{Q}\right\rangle$

Follows from transformation conditions on unit and conunit of adjunction $\Delta \dashv \times$.

CARTESIAN EQUIPMENT EXAMPLES

- (\mathscr{V}, \otimes) monoidal but additionally cartesian

1. Ab
2. Slat

- Span - [Ale18, Prop. 4.2.6]
- Rel - [Lam22] directly but $\operatorname{Rel} \cong \operatorname{Mat}(\mathbf{2})$ so also by below
- Prof
- Ring - can do this by hand
- $\operatorname{Mat}(\mathscr{V})$ for \mathscr{V} cartesian monoidal [Ale18, Prop 4.2.5]

But what about the others?
And is there a more systematic way to do these proofs?

SOME MAIN PLAYERS IN MORE DETAIL

TWO

Let 2 denote the double category with

- one object • and no non-identity arrows
- two proarrows

1. $0:=y$ 。
2. 1

- one non-identity cell $0 \leq 1$

External composition is $V: 2 \times 2 \rightarrow 2$.
Cartesian structure is $\wedge: 2 \times 2 \rightarrow 2$.

RINGS AND BIMODULES [PAR21]

Let Ring denote the double category whose

- objects are unital rings
- morphisms are unital ring homomorphisms
- proarrows are usual bimodules
- cells are homomorphisms of abelian groups $\phi: M \rightarrow N$

$$
\begin{aligned}
& A \xrightarrow{M} B \\
& f \downarrow \quad \phi \quad \downarrow g \\
& C \xrightarrow[N]{\underset{N}{L}} D
\end{aligned}
$$

such that $f(a) \phi(m)=\phi(a m)$ and $\phi(m) g(b)=\phi(m b)$.

DOUBLE STRUCTURE OF RINGS AND BIMODULES

- Every ring is a bimodule over itself = external unit
- Tensor of bimodules (where defined) = external composition
- Ring has all companions and conjoints = restriction and extension of scalars [Par21, §2]
- One can check by hand that Ring is cartesian using Aleiferi's criteria above

ORDERS AND IDEALS [CS86]

Let $\rrbracket \mathbf{d l}$ denote the double category whose

- objects are (pre)ordered sets (reflexive and transitive)
- arrows are order-preserving maps (i.e. internal functors)
- proarrows are ideals - relations $I \rightarrow A \times B$ such that $a^{\prime} \leq_{A} a$ and $a l b$ and $b \leq_{B} b^{\prime}$ together imply $a^{\prime} l b^{\prime}$
- cells??? (Carboni \& Street define a bicategory)

WHAT ARE THE CELLS?

For cells, options:

1. Mimic module definition explicitly
2. Rely on later abstract developments
3. Notice connection to [GP99, §3.3] - namely, the double category of 2-enriched categories and profunctors

IDEALS ARE PROFUNCTORS

A 2-enriched profunctor is an order-preserving map $P: A^{O P} \times B \rightarrow \mathbf{2}$.
These are called pre-order profunctors in [Gra20, §3.4.6].
Via 2-elements construction such a profunctor yields an ideal:

$$
I:=\mathbf{E l t}(P)=\{(a, b) \mid P(a, b)=1\}
$$

Check: if $a^{\prime} \leq_{A} a$ and $a l b$ and $b \leq_{B} b^{\prime}$, then

$$
P\left(a^{\prime}, b^{\prime}\right) \geq_{\mathbf{2}} P(a, b) \geq_{\mathbf{2}} 1
$$

since P contravariant in 1st argument and covariant in 2nd.
Reverse construction just as easy.

CELLS, DEFINED

So, [dl is essentially p0rd from [GP99, §3.3], [Gra20, §3.4.6].
Cells are then certain 2-natural transformations.
This is an instance of another class of examples, namely, \mathscr{V}-Prof for suitably structured monoidal \mathscr{V}.

1. $\mathscr{V}=\mathbf{2}$ yields orders and ideals/order-profunctors
2. $\mathscr{V}=\mathbb{R}_{+}$yields Lawvere metric space and metric profunctors
3. $\mathscr{V}=\mathbf{A b}$ yields preadditive categories and preadditive profunctors
4. $\mathscr{V}=$ Set yields ordinary categories and profunctors

In general \mathscr{V} needs a bit of structure:

- monoidal
- closed
- cocomplete
- (if not closed) tensor preserves colimits in each argument

In this case, \mathscr{V}-Prof

- is a double category (coend formula for external composition)
- is an equipment (we'll see this later)
- if \mathscr{V} is cartesian, so is \mathscr{V} - \mathbb{P} rof (also later).

SUPLATTICES [JT84, CH. I]

A suplattice is a poset A for which each arbitrary subset $S \subset A$ has a supremum. A homomorphism of suplattices is an order- and join-preserving function. Category denoted Slat.

- Every homom f has a right adjoint $f_{*} y=\bigvee\{x \mid f(x) \leq y\}$
- Slat finitely complete and cocomplete
- Tensor $A \otimes B$ makes Slat into a monoidal category.
- closed; homs are sets of morphisms $A \rightarrow B$ with pointwise order
- strong self-duality
- *-autonomy

DOUBLE CATEGORY OF SUPLATTICES

Slat is the horizontal categorification of Slat with

- one object
- only identity arrows
- a proarrow is a suplattice
- a cell is a suplattice homomorphism.

This is not the bicategory of semilattices from [CW87].
Slat is finitely complete and tensor distributes over products [JT84, Prop. I.5.2]. So Slat is cartesian. It is an equipment and is closed and has an involution as in [Shu08, §5.8, §10.1].

DOUB CATS OF FRAMES AND OF POINTLESS SPACES

Joyal \& Tierney define frames and locales as certain monoids in the monoidal category of suplattices [JT84, Chs. II, III]. Likewise they define modules over such a monoid.

Looking for generalizations:

- Frame = ???
- $\mathbb{C O C}=? ? ?$

Since likely $\mathbb{L} \mathbf{o c}=\mathbb{F}$ rame ${ }^{o p}$ it suffices to define the former.
What are these? Are they cartesian? Equipments?

Pattern:

1. objects are monoid-like
2. proarrows are module-like
3. composition is by certain stable colimits or coends

For this we need monoids and modules in a double category.

MONOIDS AND MODULES

LITERATURE AND TENDENTIOUS OPINIONS

- monoids \& modules appear (first?) in Leinster's [Lei04] in context of T-multicategories
- utilized in [CS10] in context of virtual double categories (special
T-multicategories)
- appear non-virtually in [Shu08] to show that many double categories are nice equipments
- virtual = correct (double presheaves form a virtual double category [Par11])
- everything is a monoid?

DEFINITIONS

A monoid in a double category \mathbb{D} is an endo-proarrow $A: X \rightarrow X$ together with globular action $\mu: A \otimes A \Rightarrow A$ and unit $\eta: y_{X} \Rightarrow A$ cells satisfying the equations

$$
\begin{aligned}
& \text { 1. } \mu\left(\mu \otimes y_{A}\right)=\mu\left(y_{A} \otimes \mu\right) \\
& \text { 2. } \mu\left(\eta \otimes y_{A}\right)=y_{A}=\mu\left(y_{A} \otimes \eta\right) \text {. }
\end{aligned}
$$

$$
a\left(a^{\prime} a^{\prime \prime}\right)=\left(a a^{\prime}\right) a^{\prime \prime}
$$

$$
1 a=a=a 1
$$

A homomorphism of such monoids consists of an arrow $f: X \rightarrow Y$ and a cell $\phi: A \Rightarrow B$ with source and target f satisfying

$$
\begin{aligned}
& \text { 1. } v(\phi \otimes \phi)=\phi \mu \\
& \text { 2. } \phi \eta=\epsilon y_{f} \text {. }
\end{aligned}
$$

$\phi(a) \cdot \phi\left(a^{\prime}\right)=\phi\left(a \cdot a^{\prime}\right)$ $\phi(1)=1$

Let $\operatorname{Mon}(\mathbb{D})$ be the category of monoids and homomorphisms in \mathbb{D}.

ASSOCIATIVITY CONDITION DIAGRAMATICALLY

EXAMPLES

- A monoid in Span is a small category.
- A monoid in Rel is an ordered set.
- A monoid in $\mathbf{A} \mathbf{b}$ is a ring with 1.
- A monoid in Mat (\mathscr{V}) is a \mathscr{V}-category:

1. orders
2. Lawvere metric spaces
3. preadditive categories

- A monoid A in Slat satisfying $a \leq 1$ and $a \cdot a=a$ for all $a \in A$ is a frame, and conversely [JT84, §III.1].

DEFINITIONS

A bimodule from a monoid A to one B consists of a proarrow $M: X \rightarrow Y$ and left $\lambda: A \otimes M \Rightarrow M$ and right $\rho: M \otimes B \Rightarrow M$ globular action cells satisfying

$$
\begin{aligned}
& \text { 1. } \lambda\left(y_{A} \otimes \lambda\right)=\lambda\left(\mu \otimes y_{M}\right) \\
& \text { 2. } \rho\left(\rho \otimes y_{B}\right)=\rho\left(y_{M} \otimes v\right) \\
& \text { 3. } \rho\left(\lambda \otimes y_{B}\right)=\lambda\left(y_{A} \otimes \rho\right) .
\end{aligned}
$$

$$
a \cdot\left(a^{\prime} \cdot m\right)=\left(a a^{\prime}\right) \cdot m
$$

$$
(m \cdot b) \cdot b^{\prime}=m \cdot\left(b b^{\prime}\right)
$$

$$
(a \cdot m) \cdot b=a \cdot(m \cdot b)
$$

$\lambda(\phi \otimes \theta)=\theta \lambda$
$\rho(\theta \otimes \omega)=\theta \rho$

DEFINITIONS

A bimodule from a monoid A to one B consists of a proarrow $M: X \rightarrow Y$ and left $\lambda: A \otimes M \Rightarrow M$ and right $\rho: M \otimes B \Rightarrow M$ globular action cells satisfying

$$
\begin{align*}
& \text { 1. } \lambda\left(y_{A} \otimes \lambda\right)=\lambda\left(\mu \otimes y_{M}\right) \\
& \text { 2. } \rho\left(\rho \otimes y_{B}\right)=\rho\left(y_{M} \otimes v\right) \\
& \text { 3. } \rho\left(\lambda \otimes y_{B}\right)=\lambda\left(y_{A} \otimes \rho\right) .
\end{align*}
$$

$(m \cdot b) \cdot b^{\prime}=m \cdot\left(b b^{\prime}\right)$

A modulation between bimodules M and N is a cell $\theta: M \Rightarrow N$ where

1. $\lambda(\phi \otimes \theta)=\theta \lambda$
$\phi(a) \cdot \theta(m)=\theta(a \cdot m)$
2. $\rho(\theta \otimes \psi)=\theta \rho$
$\theta(m) \cdot \psi(b)=\theta(m \cdot b)$

EXAMPLES

- a bimodule in Ring is a usual bimodule; a modulation is a properly bilinear map as in [Par21]
- generally a bimodule in Mat (\mathscr{V}) is a \mathscr{V}-profunctor

PROPOSITION

Monoids, modules, homomorphisms, and certain multicells in a double category \mathbb{D} form a virtual double category $\operatorname{Mod}(\mathbb{D})$.

A virtual double category is a category equipped proarrows and further cells with multi-sources. Cells compose like in operads or multicategories, but not externally as in a double category.

DEFINITION AND PROP [SHU08, §11.4, §11.10]

A double category \mathbb{D} has local coequalizers if each category $\mathbb{D}(A, B)$ has coequalizers and they are preserved by external composition in each argument.

If \mathbb{D} is an equipment with local coequalizers, then $\operatorname{Mod}(\mathbb{D})$ is a double category and in fact an equipment.

EXAMPLES

- $\operatorname{Mod}(\operatorname{Mat}(\mathscr{V})):=\mathscr{V}$ - Prof $-\mathscr{V}$-categories and \mathscr{V}-profunctors

1. $\operatorname{Met} \cong \operatorname{Mod}\left(\operatorname{Mat}\left(\mathbb{R}_{+}\right)\right)$
2. $\ \mathbf{d l} \cong \mathbb{M o d}(\operatorname{Rel}) \cong \operatorname{Mod}(\operatorname{Mat}(\mathbf{2}))$
3. Ring $\cong \operatorname{Mod}(A b)$

- $\operatorname{Mod}(\mathbb{S p a n}(\mathscr{E}))$ for finitely complete \mathscr{E} - internal categories, internal functors, internal profunctors

1. $\operatorname{Prof} \cong \operatorname{Mod}(S p a n) \cong \operatorname{Mod}(\operatorname{Mat}($ Set $))$
2. Mod(Span(Esp)) or Mod(Span(CGHaus)) - double spaces??
3. Mod(Span(Man)) - double manifolds?? (virtual!)

- $\operatorname{Mod}(\operatorname{Mod}(\mathbb{D}))$ - algebras and algebra bimodules

COMMENTS ON THE PROOF

Composition of modules defined via a coequalizer in $\mathbb{D}(A, C)$:

$$
M \otimes B \otimes N \rightrightarrows M \otimes N \rightarrow M \otimes_{B} N
$$

Then for modulations $\theta: M \Rightarrow P$ and $\tau: N \Rightarrow Q$,

THEOREM

If \mathbb{D} is a cartesian equipment with local coequalizers, then $\operatorname{Mod}(\mathbb{D})$ is a cartesian equipment.

NB: there's almost certainly a finer analysis to be done here.
You can see some further proof details at
https://michaeljlambert.github.io/draft(6June2023).pdf

PROOF COMMENTS

Use Aleiferi's criteria:

1. is an equipment \checkmark
2. 0-part has products
3. has local products
4. laxators are invertible \checkmark

Checkmarks: [Shu08, Prop. 11.10] proves the first one; last one:
laxators are induced from those of \mathbb{D}.

PROOF COMMENTS

If (X, A, μ, η) and (Y, B, ν, ϵ) are monoids in \mathbb{D}, then the product in \mathbb{D}_{1}, namely, $A \times B: X \times Y \rightarrow X \times Y$ has induced monoid structure.

Unit and multiplication:

$$
\begin{aligned}
& \xrightarrow{y_{X \times Y}} \text {. } \\
& \text { can } \cong \| \\
& \left\|\begin{array}{c}
\overrightarrow{y_{X} \times y_{Y}} \\
\eta \times \epsilon
\end{array}\right\| \\
& \text { - } \xrightarrow[A \times B]{1} \text {. }
\end{aligned}
$$

The can isos are the laxity cells given by the pairing of projections.

PROOF COMMENTS

- canonical projections coequalize each side of the two required monoid equations
- consequently, these equations hold by uniqueness (that is, $A \times B$ is a monoid)
- universality by showing given projection and pairing morphisms in \mathbb{D}_{1} are monoid homomorphisms (again by a uniqueness argument via projections)

PROOF COMMENTS

For bimodules M and N between monoids $A \rightarrow B$, the local product $M \wedge N$ in \mathbb{D}_{1} is a bimodule. Left action induced:

Likewise for the right action.

PROOF COMMENTS

- again projections coequalize some required equations, but need to take account of restrictions too!
- so, uniqueness applied $2 x$ to get the bimodule equations
- again given projections and pairing morphisms for local products in \mathbb{D} are modulations
- see this using uniqueness arguments once again

EXAMPLES

The following are thus all cartesian equipments:

- $\operatorname{Prof} \cong \operatorname{Mod}(S p a n) \cong \operatorname{Mod}(M a t(S e t))$
- $\mathbf{d d} \cong \operatorname{Mod}(\operatorname{Rel}) \cong \operatorname{Mod}(\operatorname{Mat}(2))$
- Ring $\cong \operatorname{Mod}(A \mathbf{b})$
- Mod(Slat) - monoids and modules in semilattices
- DEsp := Mod(Span(Esp)) - double category of double spaces

DOUBLE CATEGORIES OF SPACES

Have sub-double category \mathbb{F} rame \hookrightarrow Mod(Slat) of frames, homomorphisms and modules generalizing [JT84].

Likewise $\mathbb{Z} \mathbf{o c}:=\mathbb{F}$ rame $^{O P}$.
To do:

1. A cell-theoretic definition of a frame
2. Stone Duality? That is, is $\mathbb{S p a n}(\mathbf{E s p})$ the right double category of spaces for a Stone-type duality
$\mathscr{O}: \operatorname{Span}(E s p) \rightleftarrows \mathbb{Z} \mathbf{o c}: \mathrm{pt}$
3. Descent theory for modules phrase purely double-theoretically?

REFERENCES I

[Ale18] Evangelia Aleiferi.
Cartesian Double Categories with an Emphasis on
Characterizing Spans.
PhD thesis, Dalhousie University, 2018.
[CKWW08] A. Carboni, G.M. Kelly, R.F.C. Walters, and R.J. Wood.
Cartesian bicategories II.
Theory and Applications of Categories, 19(6):93-124, 2008.
[CS86] Aurelio Carboni and Ross Street.
Order ideals in categories.
Pacific Journal of Mathematics, 124(2):275-288, 1986.
[II
references]references
[CS10] G.S.H. Cruttwell and M.A. Shulman.
A unified framework for generalized multicategories.
Theory and Applications of Categories, 24:580-655, 2010.
[CW87] A. Carboni and R.C.F. Walters.
Cartesian bicategories I.
Journal of Pure and Applied Algebra, 49:11-32, 1987.
[DPP10] Robert Dawson, Robert Paré, and Dorette Pronk.
The span construction.
Theory and Applications of Categories, 24(13):302-377, 2010.
[GP99] Marco Grandis and Robert Paré.
Limits in double categories.
Cahiers de topologie et géométrie différentielle catégoriques, 40(3):162-220, 1999.
[GP04] Marco Grandis and Robert Paré.
Adjoints for double categories.
Cahiers de Topologie et Géométrie Différentielle Catégoriques, 45(3):193-240, 2004.
[]
[Gra20] Marco Grandis.
Higher Dimensional Categories: From Double to Multiple Categories.

World Scientific, 2020.
[JT84] André Joyal and Myles Tierney.
An extension of the galois theory of grothendieck.
Memoirs of the American Mathematical Society, 51(309),
1984.
[][
[Lam22] Michael Lambert.
Double categories of relations.
Theory and Applications of Categories, 38(33):1249-1283, 2022.
[Lei04] Tom Leinster.
Higher Operads, Higher Categories, volume 298 of London Mathematical Society Lecture Notes Series.
Cambridge University Press, 2004.

Yoneda theory for double categories.

Theory and Applications of Categories, 25(17):436-489, 2011.
[Par21] Robert Paré.
Morphisms of rings.
In Claudia Casadio and Philip J. Scott, editors, Joachim
Lambek: The Interplay of Mathematics, Logic, and
Linguistics, pages 271-298. Springer Verlag, 2021.
[]
[Shu08] Michael Shulman.
Framed bicategories and monoidal fibrations.
Theory and Applications of Categories, 20(18):650-738, 2008.
[Woo82] R. Wood.
Abstract pro arrows I.
Cahiers de Topologie et Géom. Diff. Catégoriques,
23:279-290, 1982.

