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Products in PAR

In the category of sets and partial functions, PAR: (↑ means undefined and ↓ means defined)

The disjoint union ⊔ is still the coproduct.

The Cartesian product × is not the product! Here’s a reason why:

{∗}

↑

ww ��
∅ ×{∗}

π1

//
π0

oo {∗}

No map {∗} → ∅ × {∗} exists that makes this diagram commute!

However, PAR still has products given by: X ⊔Y ⊔ (X ×Y ), where the projections are
p0 ∶ X ⊔Y ⊔ (X ×Y ) → X and p1 ∶ X ⊔Y ⊔ (X ×Y ) → Y are defined as:

p0(x) = x p0(y) ↑ p0(x , y) = x

p1(x) ↑ p1(y) = y p1(x , y) = y

The pairing is defined as follows:

Z

g

))

f

uu

∃! ⟪f ,g⟫

��
X X ⊔Y ⊔ (X ×Y )

p1

//
p0

oo X

⟪f ,g⟫(z) =

⎧
⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪
⎩

f (z) if f (z) ↓ and g(z) ↑

g(z) if f (z) ↑ and g(z) ↓

(f (z),g(z)) if f (z) ↓ and g(z) ↓

↑ if f (z) ↑ and g(z) ↑
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Today’s Story

Give a restriction category explanation of what’s going.

We will explain when in a distributive restriction category, A⊕B ⊕ (A ×B) is a product.

Theorem (Cockett and Lemay)

For a distributive restriction category X, the following are equivalent:

(i) A⊕B ⊕ (A ×B) is a product;

(ii) X is classical;

(iii) X is the Kleisli category of the exception monad ⊕ 1 of a distributive category.
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Restriction Categories

Definition

A restriction category is a category X equipped with a restriction operator ( ), which associates

every map f ∶ A→ B to a map f ∶ A→ A, called the restriction of f , and such that the following
four axioms holda:

[R.1] f f = f

[R.2] f g = gf

[R.3] gf = gf

[R.4] f g = fgf

A map f is total if f = 1.

Cockett, R. and Lack, S. Restriction Categories I: Categories of partial maps..

aComposition written in diagramatic order



Restriction Categories – Examples

Example

PAR is a restriction category where the restriction of a partial function f ∶ X → Y is the partial
function f ∶ X → X defined as follows:

f (x) =

⎧
⎪⎪
⎨
⎪⎪
⎩

x if f (x) ↓

↑ if f (x) ↑

Total maps are precisely ordinary total functions between sets.

Example

Let k be a commutative ring and let k-CALG● be the category whose objects are commutative
k-algebras and whose maps are non-unital k-algebra morphisms, that is, k-linear morphisms
f ∶ A→ B that preserve the multiplication, f (ab) = f (a)f (b), but not necessarily the
multiplicative unit, so f (1) may not equal 1.

k-CALGop
● is a restriction category, so k-CALG● is a corestriction category where the corestriction

of a non-unital k-algebra morphism f ∶ A→ B is the non-unital k-algebra morphism f ∶ B → B
defined as:

f (b) = f (1)b



Restriction Products

Definition

A Cartesian restriction category is a restriction category X with:

(i) A restriction terminal object, that is, an object 1 such that for every object A there exists a
unique total map tA ∶ A→ 1 such that for every map f ∶ A→ B:

A

f

��

f // B

tB

��
A

tA

// 1

(1)

(ii) Binary restriction products, that is, every pair of objects A and B, there is an object A ×B
with total maps π0 ∶ A ×B → A and π1 ∶ A ×B → B such that for every pair of maps
f ∶ C → A and g ∶ C → B, there exists a unique map ⟨f ,g⟩ ∶ C → A ×B such that:

C

f

��

C
goo

∃! ⟨f ,g⟩

��

f // C

g

��
A A ×B

π1

//
π0

oo B

(2)



Restriction Product – Examples

Example

PAR has restriction products:

The restriction terminal object is a chosen singleton 1 = {∗}, and tX ∶ X → {∗} maps
everything to the single element, tX (x) = ∗.

The restriction product is given by the Cartesian product A ×B, where the projections
π0 ∶ X ×Y → X and π1 ∶ X ×Y → Y are defined as π0(x , y) = x and π1(x , y) = y , and the
pairing of partial functions is defined as:

⟨f ,g⟩(x) =

⎧
⎪⎪
⎨
⎪⎪
⎩

(f (x),g(x)) if f (x) ↓ and g(x) ↓

↑ o.w.

Example

k-CALGop
● has restriction products, so k-CALG● has corestriction coproducts where:

The corestriction initial object is k, and tA ∶ k → A is defined by the k-algebra structure of A.

The corestriction coproduct is given by the tensor product A⊗B, where the injections
ι0 ∶ A→ A⊗B and ι1 ∶ B → A⊗B are defined as ι0(a) = a⊗ 1 and ι1(b) = 1⊗ b, and where
the copairing is given by:

[f ,g](a⊗ b) = f (a)g(b)



Restriction Coproducts

Restriction coproducts are actual coproducts in the usual sense.

While we will only need to work with binary restriction products, for simplicity, it will be
easier to work with finite (restriction) coproducts.

For a category X with finite coproducts, we denote the coproduct as ⊕, with injection maps
ιj ∶ Aj → A0 ⊕⋯⊕An, where the copairing operation is denoted by [−,⋯,−], and we denote
the initial object as 0 with unique map zA ∶ 0→ A.

Definition

A coCartesian restriction category is a restriction category X with finite restriction coproducts,
that is, X has finite coproducts where all the injection maps ιj ∶ Aj → A0 ⊕⋯⊕An are total.



Restriction Coproduct – Examples

Example

PAR has restriction coproducts, the initial object is the empty set 0 = ∅ and the coproduct is
given by disjoint union X ⊕Y = X ⊔Y .

Example

k-CALGop
● has restriction coproducts, so k-CALG● has corestriction products where the terminal

object is the zero algebra 0 and the product is given by the product of k-algebras A ×B.



Distributive Restriction Categories

Definition

A distributive restriction category is a restriction category X which is both a Cartesian restriction
category and a coCartesian restriction category such that:

(A ×B) ⊕ (A × C) ≅ A × (B ⊕ C) 0 ≅ A × 0 (3)

Cockett, R. and Lack, S. Restriction Categories III: Colimits, Partial Limits and Extensivity.

Example

PAR is a distributive restriction category.

Example

k-CALGop
● is a distributive restriction category.



Back to today’s question:

So now we want to ask when in a distributive category is A⊕B ⊕ (A ×B) a product...

But first we need to define the projections! To do that we need restriction zeroes...
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Restriction Zeroes

Definition

A restriction category X is said to have restriction zeroes if X has zero maps such that 0 = 0.

Example

PAR has restriction zeroes, where the restriction zero maps are the partial functions 0 ∶ X → Y
which is nowhere defined, 0(x) ↑ for all x ∈ X .

Example

k-CALGop
● has restriction zeroes, so k-CALG● has corestriction zeroes, where 0 ∶ A→ B is the

zero morphism, 0(a) = 0.



Classical Products

Definition (Cockett and Lemay)

A distributive restriction category X is said to have classical products if X has restriction zeroes
and for every pair of objects A and B, the following is a product diagram:

A A⊕B ⊕ (A ×B)

p0 ∶=[1A,0,π0]oo p1 ∶=[0,1B ,π1] // B (4)

We call:
A&B ∶= A⊕B ⊕ (A ×B)

the classical product and p0 ∶ A&B → A and p1 ∶ A&B → B the classical projections.

Lemma

A distributive restriction category with classical products has finite products (the terminal object
is the restriction initial object 0).



Classical Products – Examples

Example

PAR has classical products where:

X&Y = X ⊔Y ⊔ (X ×Y )

Example

k-CALGop
● has classical products, so k-CALG● has coclassical coproducts where:

A&B = A ×B × (A⊗B)

and the coclassical injections p0 ∶ A→ A&B and p1 ∶ B → A&B are defined as:

p0(a) = (a,0, a⊗ 1) p1(b) = (0,b,1⊗ b)

The coclassical copairing ⟪f ,g⟫ ∶ A&B → C is defined as follows:

⟪f ,g⟫(a,b, x ⊗ y) = f (a) − f (a)g(1) + g(b) − f (1)g(b) + f (x)g(y)



Classical Products

Definition (Cockett and Lemay)

A distributive restriction category X is said to have classical products if X has restriction zeroes
and for every pair of objects A and B, the following is a product diagram:

A A⊕B ⊕ (A ×B)

p0 ∶=[1A,0,π0]oo p1 ∶=[0,1B ,π1] // B (5)

We call:
A&B ∶= A⊕B ⊕ (A ×B)

the classical product and p0 ∶ A&B → A and p1 ∶ A&B → B the classical projections.

Why the name classical products?

Because a distributive restriction category has classical products if and only if it classical!



Classical Restriction Categories

A classical restriction category is a restriction category with:

Joins

Relative Complements

This allows for classical Boolean reasoning.



Joins

In a restriction category for parallel maps f ∶ A→ B and g ∶ A→ B we say that:

f is less than or equal to g , f ≤ g , if f g = f ;

IDEA: When f (x) is defined then g(x) is defined and g(x) = f (x)

f and g are compatible, f ⌣ g , if f g = gf

IDEA: When both f (x) and g(x) are defined then f (x) = g(x)

Definition

A join restriction category is a restriction category X such that for any finite family of parallel
maps f0 ∶ A→ B, ..., fn ∶ A→ B that is pairwise compatible, so fi ⌣ fj for all 0 ≤ i , j ,≤ n, is a
(necessarily unique) map f0 ∨⋯ ∨ fn ∶ A→ B such that:

fi ≤ f0 ∨⋯ ∨ fn for all 0 ≤ i ≤ n;

If g ∶ A→ B is a map such that fi ≤ g for all 0 ≤ i ≤ n then f0 ∨⋯ ∨ fn ≤ g ;

h (f0 ∨⋯ ∨ fn) = hf0 ∨⋯ ∨ hfn.

Join restriction categories have restriction zeroes given by the join of the empty family.
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Joins – Examples

Example

PAR is a join restriction category where

f ≤ g if g(x) = f (x) whenever f (x) ↓.

f ⌣ g if f (x) = g(x) whenever both f (x) ↓ and g(x) ↓.

If f ⌣ g , then their join f ∨ g is defined as follows:

(f ∨ g)(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪
⎩

f (x) if f (x) ↓ and g(x) ↑

g(x) if f (x) ↑ and g(x) ↓

f (x) = g(x) if f (x) ↓ and g(x) ↓

↑ if f (x) ↑ and g(x) ↑

Example

k-CALGop
● is a join restriction category, so k-CALG● is a (co?)join corestriction category:

f ≤ g if f (1)g(a) = f (a).

f ⌣ g if g(1)f (a) = f (1)g(a).

If f ⌣ g , then their join f ∨ g is defined as follows:

(f ∨ g)(a) = f (a) + g(a) + g(1)f (a) = f (a) + g(a) + g(1)f (a)



Classical Restriction Categories

In a restriction category with restriction categories for parallel maps f ∶ A→ B and g ∶ A→ B we
say that:

f and g are disjoint, f ⊥ g , if f g = 0 (or equivalently gf = 0).

IDEA: When f (x) is defined then g(x) is undefined, and vice versa.

NOTE: f ⊥ g ⇒ f ⌣ g

Definition

A classical restriction category is a join restriction category X such that all for parallel maps
f ∶ A→ B and g ∶ A→ B such that f ≤ g , there exists a (necessarily unique) map g/f ∶ A→ B,
called the relative complement, such that:

g/f ⊥ f

g/f ∨ f = g

Cockett, R. and Manes, E. Boolean and Classical Restriction Categories..
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Classical Restriction Categories – Examples

Example

PAR is a classical restriction category where if f ≤ g , then the relative complement f /g is defined
as follows:

(g/f )(x) =

⎧
⎪⎪
⎨
⎪⎪
⎩

g(x) if f (x) ↑ and g(x) ↓

↑ if f (x) ↓ or g(x) ↑

Example

k-CALGop
● is a classical restriction category, so k-CALG● is a coclassical corestriction category

where if f ≤ g , then the relative complement g/f is defined as follows:

(g/f )(a) = g(a) − f (1)g(a)



Main Result

Theorem (Cockett and Lemay)

A distributive restriction category is classical if and only if it has classical products.



From Classical to Classical Products

Define the classical pairing ⟪f ,g⟫ ∶ C → A⊕B ⊕ (A ×B) as the join of these three maps:

⟪f ,g⟫ ∶= (f /(gf )) ι0 ∨ (g/(f g)) ι1 ∨ ⟨f ,g⟩ι2 (6)



From Classical Products to Classical

If f ⌣ g then define their join f ∨ g as follows:

f ∨ g ∶= A
⟪f ,g⟫ // B ⊕B ⊕ (B ×B)

[1B ,1B ,π0] // B (7)

If f ≤ g then define their relative complement g/f as follows:

g/f ∶= A
⟪f ,g⟫ // B ⊕B ⊕ (B ×B)

[0,1B ,0] // B (8)



Exception Monads

It turns out that classical distributive restriction categories are precisely the Kleisli categories
of exception monads!



Exception Monads

A distributive category is a category D with finite products (× and 1) and finite coproducts (⊕
and 0) such that:

(A ×B) ⊕ (A × C) ≅ A × (B ⊕ C) 0 ≅ A × 0 (9)

The exception monad of D is the monad defined as ⊕ 1.

Proposition (Cockett and Lack)

The Kleisli category D ⊕1 is a distributive restriction category where:

For a Kleisli map f ∶ A→ B ⊕ 1, its restriction is:

A
⟨1A,f ⟩ // A × (B ⊕ 1) ≅ (A ×B) ⊕ (A × 1)

π0⊕π1 // A⊕ 1 (10)

× is the restriction product and 1 is the restriction terminal object;

⊕ is the restriction coproduct and 0 is the restriction initial object.
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From Exception Monads to Classical Distributive Restriction Categories

Lemma

The Kleisli category D ⊕1 has products given by A⊕B ⊕ (A ×B).

This is because (A ×B) ⊕ 1 ≅ (A⊕B ⊕ (A ×B)) ⊕ 1.

Proposition (Cockett and Lemay)

The Kleisli category D ⊕1 is a classical distributive restriction category.



From Classical Distributive Restriction Categories to Exception Monads

For any distributive restriction category X, its subcategory of total maps T [X] is a distributive
category.

Proposition (Cockett and Lemay)

A distributive restriction category X is classical/has classical products if and only if X ≅ T [X] ⊕1.

Given a total map f ∶ A→ B ⊕ 1, define f ♯ ∶ A→ B as the composite:

f ♯ ∶= A
f // B ⊕ 1

[1B ,0] // B (11)

Given a map g ∶ A→ B, define the total map g ♭ ∶ A→ B ⊕ 1 as the join:

g ♭ ∶= gι0 ∨ tA/(gtA)ι1

IDEA: Where g is defined, send it to B and where g is undefined sent it to 1.



Main Result Again

Theorem (Cockett and Lemay)

For a distributive restriction category X, the following are equivalent:

(i) X is classical;

(ii) X has classical products;

(iii) There is a distributive category D such that X is restriction equivalent to D ⊕1.
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