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Products in PAR

In the category of sets and partial functions, PAR: (1 means undefined and | means defined)
o The disjoint union U is still the coproduct.

@ The Cartesian product x is not the product! Here's a reason why:

{*}

|
@ x{*}

0

{*}

T

No map {*} — @ x {*} exists that makes this diagram commute!



Products in PAR

In the category of sets and partial functions, PAR: (1 means undefined and | means defined)
@ The disjoint union U is still the coproduct.
@ The Cartesian product x is not the product!

o However, PAR still has products given by: X U Y U (X x Y), where the projections are
po: XUYu(XxY)->Xand p1: XuYu(XxY)—Y are defined as:

po(x) = x po(y) * po(x,y) = x
p1(x) 1 pi(y)=y pi(x,y) =y

The pairing is defined as follows:

V4
I
L3 (re) ¢
Y
X< XuYu(XxY)— =X
Po P1
f(z) if f(z) | and g(z) 1t

L le@ if f(z) 1 and g(2) |
N if f(z) 1 and g(z) 1



Today's Story

@ Give a restriction category explanation of what's going.



Today's Story

@ Give a restriction category explanation of what's going.

o We will explain when in a distributive restriction category, A® B & (A x B) is a product.

Theorem (Cockett and Lemay)

For a distributive restriction category X, the following are equivalent:
@ Ao B® (AxB) is a product;
@ X is classical;

@ X is the Kleisli category of the exception monad _® 1 of a distributive category.




Restriction Categories

Definition

A restriction category is a category X equipped with a restriction operator U which associates
every map f: A— B to a map f: A— A, called the restriction of f, and such that the following
four axioms hold?:

o [R1] ff="f
o [R.2] fg =&
o [R3] gf =&f

o [R.4] g = fgf
A map f is total if f = 1.

@ Cockett, R. and Lack, S. Restriction Categories I: Categories of partial maps..

?Composition written in diagramatic order




Restriction Categories — Examples

PAR is a restriction category where the restriction of a partial function f : X — Y is the partial
function f : X - X defined as follows:

<\ Jx iff(x)
“X)‘{T if £(x) 1

Total maps are precisely ordinary total functions between sets.

Example

Let k be a commutative ring and let k-CALG, be the category whose objects are commutative
k-algebras and whose maps are non-unital k-algebra morphisms, that is, k-linear morphisms

f : A — B that preserve the multiplication, f(ab) = f(a)f(b), but not necessarily the
multiplicative unit, so f(1) may not equal 1.

k-CALGZ is a restriction category, so k-CALG, is a corestriction category where the corestriction
of a non-unital k-algebra morphism f : A — B is the non-unital k-algebra morphism 7 : B - B
defined as:

f(b)=f(1)b




Restriction Products

A Cartesian restriction category is a restriction category X with:

@ A restriction terminal object, that is, an object 1 such that for every object A there exists a
unique total map ts : A — 1 such that for every map f: A — B:

A B
I F
A 1

@ Binary restriction products, that is, every pair of objects A and B, there is an object Ax B
with total maps mp: Ax B - A and 71 : A x B — B such that for every pair of maps
f:C— Aand g: C — B, there exists a unique map (f, g) : C > A x B such that:

f
_—

.
ta

c g c f c
|

fl 13! (f.g) lg (2)
Y

A Ax B B




Restriction Product — Examples

PAR has restriction products:

@ The restriction terminal object is a chosen singleton 1 = {x}, and tx : X — {*} maps
everything to the single element, tx(x) = *.

@ The restriction product is given by the Cartesian product A x B, where the projections
m: XxY > Xand 71 : X x Y — Y are defined as my(x,y) = x and m1(x,y) =y, and the
pairing of partial functions is defined as:

(f(x),8(x)) iff(x) | and g(x) |
"

O.W.

(f’g)(X)={

k-CALGZ has restriction products, so k-CALG, has corestriction coproducts where:

@ The corestriction initial object is k, and t4 : k > A is defined by the k-algebra structure of A.

@ The corestriction coproduct is given by the tensor product A® B, where the injections
to:A>A®B and 1 : B—> A® B are defined as 1p(a) =a® 1 and ¢1(b) =1 ® b, and where
the copairing is given by:

[f,gl(a® b) = f(a)g(b)




Restriction Coproducts

@ Restriction coproducts are actual coproducts in the usual sense.

@ While we will only need to work with binary restriction products, for simplicity, it will be
easier to work with finite (restriction) coproducts.

@ For a category X with finite coproducts, we denote the coproduct as @, with injection maps
tj: Aj > Ag @ - ® A,, where the copairing operation is denoted by [—,---,~], and we denote
the initial object as 0 with unique map z4 : 0 — A.

Definition

A coCartesian restriction category is a restriction category X with finite restriction coproducts,
that is, X has finite coproducts where all the injection maps ¢; : Aj > Ag @ --- ® A, are total.




Restriction Coproduct — Examples

PAR has restriction coproducts, the initial object is the empty set 0 = @ and the coproduct is
given by disjoint union X @ Y =X0Y.

k-CALGZ has restriction coproducts, so k-CALG, has corestriction products where the terminal
object is the zero algebra 0 and the product is given by the product of k-algebras A x B.




Distributive Restriction Categories

Definition

A distributive restriction category is a restriction category X which is both a Cartesian restriction
category and a coCartesian restriction category such that:

(AxB)e (AxC)zAx(Ba () 0xAx0 3)

@ Cockett, R. and Lack, S. Restriction Categories I1l: Colimits, Partial Limits and Extensivity.

PAR is a distributive restriction category.

k-CALGZ is a distributive restriction category.




Back to today's question:

@ So now we want to ask when in a distributive category is A® B® (A x B) a product...



Back to today's question:

@ So now we want to ask when in a distributive category is A® B® (A x B) a product...

o But first we need to define the projections! To do that we need restriction zeroes...



Restriction Zeroes

Definition

A restriction category X is said to have restriction zeroes if X has zero maps such that 0 = 0.

PAR has restriction zeroes, where the restriction zero maps are the partial functions 0: X — Y
which is nowhere defined, 0(x) 1 for all x € X.

k-CALGZ has restriction zeroes, so k-CALG, has corestriction zeroes, where 0: A — B is the
zero morphism, 0(a) = 0.




Classical Products

Definition (Cockett and Lemay)

A distributive restriction category X is said to have classical products if X has restriction zeroes
and for every pair of objects A and B, the following is a product diagram:

:=[14,0,7 =[0,1p,m
A poi=14.0:o] A®B®(AxB) przlode B 4)

We call:
A&B:=AdB& (AxB)

the classical product and pg : A&B — A and p; : A&B — B the classical projections.

A distributive restriction category with classical products has finite products (the terminal object
is the restriction initial object 0).




Classical Products — Examples

PAR has classical products where:

X&Y =XuYu(XxY)

Example

k-CALGZ has classical products, so k-CALG, has coclassical coproducts where:
A&B=AxBx (A® B)
and the coclassical injections pp : A > A&B and p; : B - A&B are defined as:
po(a) =(a,0,a®1) p1(b) = (0,b,1® b)
The coclassical copairing (f,g)) : A&B — C is defined as follows:

(f.g)(a b, xey)=f(a)-f(a)g(1) +g(b) - f(1)g(b) + f(x)g(y)




Classical Products

Definition (Cockett and Lemay)
A distributive restriction category X is said to have classical products if X has restriction zeroes

and for every pair of objects A and B, the following is a product diagram:

:=[14,0, :=[0,1p,
A poi={1a0.7o) A®B® (AxB) purlle m) B (5)

We call:
A&B:=A®B&(AxB)

the classical product and pg : A&B — A and p; : A&B — B the classical projections.

Why the name classical products?

Because a distributive restriction category has classical products if and only if it classical!



Classical Restriction Categories

A classical restriction category is a restriction category with:
e Joins
o Relative Complements

This allows for classical Boolean reasoning.



In a restriction category for parallel maps f: A— B and g : A - B we say that:

o f is less than or equal to g, f < g, if fg = f;
IDEA: When f(x) is defined then g(x) is defined and g(x) = f(x)

o f and g are compatible, f - g, if fg = &f
IDEA: When both f(x) and g(x) are defined then f(x) = g(x)



Joins

In a restriction category for parallel maps f: A— B and g : A - B we say that:

o f is less than or equal to g, f < g, if fg = f;
IDEA: When f(x) is defined then g(x) is defined and g(x) = f(x)

o f and g are compatible, f - g, if fg = &f
IDEA: When both f(x) and g(x) are defined then f(x) = g(x)

A join restriction category is a restriction category X such that for any finite family of parallel
maps fo: A— B, ..., f, : A— B that is pairwise compatible, so f; - f; for all 0 < i,j,< n, is a
(necessarily unique) map fy v --- v f; : A — B such that:

o fi<fyv--vf,forall0<i<n;
o If g: A— B is a map such that fi< g forall0<i<nthen fyv--vf<g;

o h(foVv -V fy)=hfyVv--V hf,.

Join restriction categories have restriction zeroes given by the join of the empty family.



Joins — Examples

PAR is a join restriction category where
o f < g if g(x) = f(x) whenever f(x) {.
o f - gif f(x)=g(x) whenever both f(x) | and g(x) {.
o If f - g, then their join f v g is defined as follows:
f(x) if f(x){ and g(x) 1
X if f(x)1 and g(x) |
(Fv )0 - 18 () 1 and g(x)

f(x)=g(x) if f(x)| and g(x) |
) if f(x)1 and g(x) 1

v

k-CALGZ is a join restriction category, so k-CALG, is a (co?)join corestriction category:
o f<gif f(1)g(a)=f(a).
o f-gifg(l)f(a)="F(1)g(a).

e If f - g, then their join f Vv g is defined as follows:

(fve)(a) =f(a) +g(a) +g(1)f(a) = f(a) + g(a) + g(1)f(a)




Classical Restriction Categories

In a restriction category with restriction categories for parallel maps f : A— B and g: A —> B we
say that:

o f and g are disjoint, f 1 g, if fg = 0 (or equivalently gf = 0).
IDEA: When f(x) is defined then g(x) is undefined, and vice versa.
NOTE: f Lg=f-g



Classical Restriction Categories

In a restriction category with restriction categories for parallel maps f : A— B and g: A —> B we
say that:

o f and g are disjoint, f 1 g, if fg = 0 (or equivalently gf = 0).
IDEA: When f(x) is defined then g(x) is undefined, and vice versa.
NOTE: f Lg=f-g

A classical restriction category is a join restriction category X such that all for parallel maps
f:A— B and g:A— B such that f < g, there exists a (necessarily unique) map g\f: A — B,
called the relative complement, such that:

o g\fLf
o g\fvf=g

@ Cockett, R. and Manes, E. Boolean and Classical Restriction Categories..




Classical Restriction Categories — Examples

PAR is a classical restriction category where if f < g, then the relative complement f/g is defined
as follows:

_Jg(x) iff)1 and g(x) |
(\F)(x) = {T if F(x) 4 or g(x)1

k-CALGZ is a classical restriction category, so k-CALG, is a coclassical corestriction category
where if f < g, then the relative complement g\f is defined as follows:

(g\f)(a) = g(a) - f(1)g(a)




Main Result

Theorem (Cockett and Lemay)

A distributive restriction category is classical if and only if it has classical products.




From Classical to Classical Products

Define the classical pairing (f,g)): C > A® B® (A x B) as the join of these three maps:

(f.g) = (F\(EF) v (8\(fg)) v (f,g) (6)



From Classical Products to Classical

If f - g then define their join f v g as follows:

f, 1g,1g,m
fvg:zA%B@BQ(BXB)%B (7)

If f < g then define their relative complement g\f as follows:

f, 0,15,0
g\f:zA%B@B@(BXB)%B (8)



Exception Monads

@ It turns out that classical distributive restriction categories are precisely the Kleisli categories
of exception monads!



Exception Monads

A distributive category is a category D with finite products (x and 1) and finite coproducts (&
and 0) such that:

(AxB)® (AxC)=Ax (B@&C) 0=2Ax%0 (9)

The exception monad of D is the monad defined as _ @ 1.



Exception Monads

A distributive category is a category D with finite products (x and 1) and finite coproducts (&
and 0) such that:

(AxB)® (AxC)=Ax (B@&C) 0=2Ax%0 (9)

The exception monad of D is the monad defined as _ @ 1.

Proposition (Cockett and Lack)
The Kleisli category D g1 is a distributive restriction category where:

@ For a Kleisli map f : A— B @& 1, its restriction is:

,f
A—D A (Bel)x(AxB)e(Ax1)

D7

Aol (10)

@ x is the restriction product and 1 is the restriction terminal object;

@ @ is the restriction coproduct and O is the restriction initial object.




From Exception Monads to Classical Distributive Restriction Categories

The Kleisli category D_g1 has products given by A@ B® (A x B).

This is because (AxB)@lz (AeBao (AxB))el.

Proposition (Cockett and Lemay)

The Kileisli category D g is a classical distributive restriction category.




From Classical Distributive Restriction Categories to Exception Monads

For any distributive restriction category X, its subcategory of total maps T[X] is a distributive
category.

Proposition (Cockett and Lemay)

A distributive restriction category X is classical/has classical products if and only if X 2 T[X] g1.

Given a total map f: A > B @1, define f! : A > B as the composite:

e A f Bel [1g,0] B (11)

Given a map g : A — B, define the total map g’: A — B @1 as the join:
g' =gV ta\(gta)n

IDEA: Where g is defined, send it to B and where g is undefined sent it to 1.



Main Result Again

Theorem (Cockett and Lemay)

For a distributive restriction category X, the following are equivalent:
@ X js classical;
@ X has classical products;

@ There is a distributive category D such that X is restriction equivalent to D g7.
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