Ind Tangent Categories

Geoff Vooys

2023 June 8

Geoff Vooys

Ind Tangent Categories

2023 June 8

< 4 → <

문 🛌 🖻

Geoff Vooys

< 1 k

æ

Theorem

Let $(\mathscr{C}, \mathbb{T})$ be a tangent category. Then there is a tangent structure $Ind(\mathbb{T})$ on the ind-category $Ind(\mathscr{C})$ induced by \mathbb{T} such that $(Ind(\mathscr{C}), Ind(\mathbb{T}))$ is a tangent category.

Theorem

Let $(\mathscr{C}, \mathbb{T})$ be a tangent category. Then there is a tangent structure $\operatorname{Ind}(\mathbb{T})$ on the ind-category $\operatorname{Ind}(\mathscr{C})$ induced by \mathbb{T} such that $(\operatorname{Ind}(\mathscr{C}), \operatorname{Ind}(\mathbb{T}))$ is a tangent category. Furthermore, if $(F, \alpha) : (\mathscr{C}, \mathbb{T}) \to (\mathscr{D}, \mathbb{S})$ is a tangent morphism of tangent categories then $(\operatorname{Ind}(F), \hat{\alpha}) : (\operatorname{Ind}(\mathscr{C}), \operatorname{Ind}(\mathbb{T})) \to (\operatorname{Ind}(\mathscr{D}), \operatorname{Ind}(\mathbb{S}))$ is a tangent morphism as well. Finally, α is strong if and only if $\hat{\alpha}$ is strong.

For Real (and *p*-adic): Why Though?

My intuition lies in schemey things. There is an equivalence of categories between the category of formal schemes and the ind-category of schemes. A formal scheme is on one hand a formal filtered cocompletion of a schemes and on the other hand a completion of a scheme along a closed subscheme. We have tangents for schemes by work of Geoff and JS in [3]. Now we should be able to formally complete these tangents along closed subschemes to get tangents of formal functions.

Geoff Vooys

Ind Tangent Categories

2023 June 8

< 47 ▶

э

What is an Ind-Category

In one line: if \mathscr{C} is a category then $Ind(\mathscr{C})$ is the free cocompletion of \mathscr{C} . It was first discovered and studied by Grothendieck and Verdier in [1, Exposé I.8.2-9].

4/10

Let \mathscr{C} be a category and let $\mathbf{y} : \mathscr{C} \to [\mathscr{C}^{op}, \underline{Set}]$ be its Yoneda embedding. The Density Lemma says that for any presheaf $P \in [\mathscr{C}^{op}, \underline{Set}]$ there is an isomorphism

$$P \cong \int^{X \in \mathscr{C}} P(X) \times \mathscr{C}(-, X) \cong \operatorname{colim}_{(\mathbf{y}(X) \to P) \in (\mathbf{y} \downarrow P)} \mathscr{C}(-, X)$$

where $\mathbf{y} \downarrow P$ denotes the comma category of \mathbf{y} over P. This realizes $[\mathscr{C}^{op}, \underline{Set}]$ as the free cocompletion of \mathscr{C} as it says every presheaf is a colimit of representable functors.

To pick out the free filtered cocompletion, we only take those presheaves which come from filtered colimits!

Define the presheaf Ind-cocompletion of $\ensuremath{\mathscr{C}}$ as follows:

• Objects: Presheaves $P \in [\mathscr{C}^{op}, \underline{Set}]_0$ which have an isomorphism

$$P \cong \operatorname{colim}_{i \in I} \mathscr{C}(-, X_i)$$

with I a filtered category.

• Morphisms, Identities, and Composition: As in $[\mathscr{C}^{op}, \underline{Set}]$.

4/10

Define the presheaf Ind-cocompletion of ${\mathscr C}$ as follows:

• Objects: Presheaves $P \in [\mathscr{C}^{op}, \underline{Set}]_0$ which have an isomorphism

$$P \cong \operatorname{colim}_{i \in I} \mathscr{C}(-, X_i)$$

with *I* a filtered category.

• Morphisms, Identities, and Composition: As in [\mathscr{C}^{op} , <u>Set</u>].

We write this category as $Ind_{PSh}(\mathscr{C})$.

Define the presheaf Ind-cocompletion of ${\mathscr C}$ as follows:

• Objects: Presheaves $P \in [\mathscr{C}^{op}, \underline{Set}]_0$ which have an isomorphism

 $P \cong \operatorname{colim}_{i \in I} \mathscr{C}(-, X_i)$

with *I* a filtered category.

• Morphisms, Identities, and Composition: As in $[\mathscr{C}^{op}, \underline{Set}]$.

An important question: Is this invariant under equivalence? How can we extract structure?

Let ${\mathscr C}$ be a category. An ind-object of ${\mathscr C}$ is a functor

 $F:I\to \mathcal{C}$

where I is a filtered category. These make up the objects of $Ind(\mathscr{C})$.

4/10

Let ${\mathscr C}$ be a category. An ind-object of ${\mathscr C}$ is a functor

 $F:I\to \mathcal{C}$

where I is a filtered category. These make up the objects of $Ind(\mathscr{C})$.

Notation

We will often write ind-objects in \mathscr{C} as tuples $\underline{X} = (X_i)_{i \in I}$ where $X_i := F(i)$ for all $i \in I_0$. This leaves both the transition morphisms and functor F implicit, so we'll only use this when it won't cause confusion. We'll also write

$$(X_i)_{i\in I} \leadsto F : I \to \mathscr{C}$$

to denote moving between the two representations of objects.

< 日 > < 同 > < 三 > < 三 >

For ind-objects (X_i) , (Y_j) a morphism $\rho : (X_i) \to (Y_j)$ is somewhat trickier to define. We will not go through this too explicitly here, but we describe what our hom-set is:

$$\mathsf{Ind}(\mathscr{C})\left((X_i)_{i\in I},(Y_j)_{j\in J}
ight):=\lim_{i\in I}\left(\operatornamewithlimits{colim}_{j\in J}\mathscr{C}\left(X_i,Y_j
ight)
ight)$$

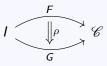
The ind-category $Ind(\mathscr{C})$ is defined by:

- Objects: Ind-objects $\underline{X} = (X_i)$ for filtered categories and functors $F: I \to \mathscr{C}$.
- Morphisms, Composition, Identities: Induced by the assignment

$$\mathsf{Ind}(\mathscr{C})ig((X_i)_{i\in I},(Y_j)_{j\in J}ig) := \lim_{i\in I} \left(\operatornamewithlimits{colim}_{j\in J} \mathscr{C}(X_i,Y_j)
ight).$$

4/10

When $(X_i) \leftrightarrow F : I \to \mathscr{C}$ and $(Y_j) \leftrightarrow G : J \to \mathscr{C}$ are ind-objects with the indexing category I = J we can describe the morphisms $(X_i) \to (Y_j)$ as natural transformations ρ :



In this case the hom's in $Ind(\mathscr{C})$ are simply the colimit of the hom's $\rho_i : X_i \to Y_i$ induced by ρ along the diagrams. We write these morphisms as

$$(\rho_i): (X_i) \to (Y_i), \qquad \rho_i: X_i \to Y_i \iff \rho_i: F(i) \to G(i)$$

The Ind(-) construction can be extended to functors in the following sense: If there is a functor $F : \mathscr{C} \to \mathscr{D}$ then there is a functor $Ind(\mathcal{F}) : Ind(\mathscr{C}) \to Ind(\mathscr{D})$. It is defined by the assignments below:

Geoff Vooys

- On objects: if $(X_i) \leftrightarrow G : I \to \mathscr{C}$ then $\operatorname{Ind}(F)(X_i) := (FX_i) \leftrightarrow F \circ G : I \to \mathscr{D}.$
- On specific morphisms: if $G, H : I \to \mathscr{C}$ are functors for I filtered and $\rho : F \Rightarrow G$ then $Ind(F)(\rho) := F * \rho$ as in the two-cell:

Ind Tangent Categories	2023 June 8

イロト イヨト イヨト イヨト

 On generic morphisms: the assignment on morphisms is induced by the following natural map. For any functors G : I → C and H : J → C for I, J filtered there is a natural map

$$\theta_F^{i,j}: \mathscr{C}(Gi,Hj) \to \mathscr{D}(F(Gi),F(Hj)).$$

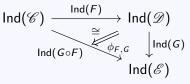
The assignment of Ind(F) is induced by taking the limit of the filtered colimit of the $\theta_F^{i,j}$, i.e., by

$$\lim_{i \in I} \left(\operatorname{colim}_{j \in J} \mathscr{C}(Gi, Hj) \right) \xrightarrow{\theta_F^{I,J}} \lim_{i \in I} \left(\operatorname{colim}_{j \in J} \mathscr{D}\left(F(Gi), F(Hj)\right) \right).$$

For any composable functors

$$\mathscr{C} \xrightarrow{\mathsf{F}} \mathscr{D} \xrightarrow{\mathsf{G}} \mathscr{E}$$

there is a compositor natural isomorphism $\phi_{F,G}$ which we visualize in the invertible 2-cell



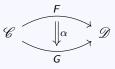
Geoff Vooys	Ind Tangent Categories	2023 June 8

A D N A B N A B N A B N

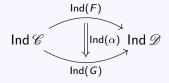
Some Ind-Facts

(Pseudo)Functoriality

For any natural transformation



there is a corresponding natural transformation of ind-functors:



~		1.1			
Ge	off	v	o	Ô١	19

э

To define the ind-transformation $\operatorname{Ind}(\alpha) : \operatorname{Ind}(F) \Rightarrow \operatorname{Ind}(G)$ note that we need maps $\operatorname{Ind}(F)(X_i) \to \operatorname{Ind}(G)(X_i)$ for any $(X_i) \in \operatorname{Ind}(\mathscr{C})_0$. But if $(X_i) \nleftrightarrow H : I \to \mathscr{C}$ then the horizontal composite

determines $Ind(\alpha)$ as the natrual transformation with components $Ind(\alpha)_{X_i} = (\alpha_{X_i}) : (FX_i) \to (GX_i).$

Putting it together we get an Ind-pseudofunctor

 $\mathsf{Ind}:\mathfrak{Cat}\to\mathfrak{Cat}$

where \mathfrak{Cat} is the (strict) 2-category of categories. Also there is an equivalence of categories $L: \operatorname{Ind}(\mathscr{C}) \xrightarrow{\simeq} \operatorname{Ind}_{\mathsf{PSh}}(\mathscr{C})$ given by

$$L((X_i)_{i\in I}) := \operatorname{colim}_{i\in I} \mathbf{y}(X_i).$$

Geoff Vooys

< 1 k

э

Tangent categories are a categorification of the tangent bundle functor $T : \mathbf{SMan} \rightarrow \mathbf{SMan}$ of smooth (real) manifolds and its properties. Rediscovered and phrased in a modern language by Robin and Geoff in [2], these give categorical tools with which to use differential geometric techniques and reasoning in myriad and wide-reaching settings.

Let $\mathscr C$ be a category. We say that $\mathscr C$ has a tangent structure $\mathbb T = (T, p, \operatorname{add}, 0, \ell, c)$ when:

• $T: \mathscr{C} \to \mathscr{C}$ is an endofunctor, $p: T \Rightarrow id_{\mathscr{C}}$ is a natural transformation, the pullback powers

exist and each functor T^n preserves these pullback powers (for any $n \in \mathbb{N}$).

6/10

• add : $T_2 \Rightarrow T$ and 0 : $\mathrm{id}_{\mathscr{C}} \Rightarrow T$ are natural transformations such that each map $p_X : TX \to X$ is a commutative monoid internal to $\mathscr{C}_{/X}$ with addition and unit given by add_X and 0_X , respectively.

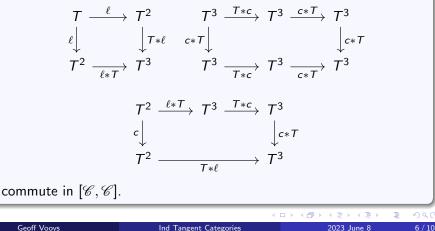
- ℓ: T ⇒ T² is a natural transformation (called the vertical lift) which make (ℓ_X, 0_X) into a morphism of additive bundles in *C* for all objects X.
- $c: T^2 \Rightarrow T^2$ is a natural transformation (called the canonical flip) which makes (c_X, id_{TX}) into a bundle map in \mathscr{C} for any object X.

6/10

The Tangent Category

Tangent Categories and Tangent Morphisms

• The equations $c^2 = id_{T^2}$ and $c \circ \ell = \ell$ hold. Additionally, the diagrams



• For any $X \in \mathscr{C}_0$ the diagram

$$T_2X \xrightarrow{(T*\mathrm{add})_X \circ \langle \ell \circ \pi_1, 0_{TX} \circ \pi_2 \rangle} T^2X \xrightarrow{T(p_X)} TX$$

is an equalizer diagram.

6/10

If \mathscr{C} is a category with a tangent structure \mathbb{T} , we say that the pair $(\mathscr{C}, \mathbb{T})$ is a tangent category. By abuse of notation we will sometimes say that \mathscr{C} is a tangent category and leave the tangent structure implicit until needed.

6/10

The Tangent Category

Tangent Categories and Tangent Morphisms

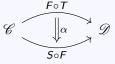
Let (\mathscr{C},\mathbb{T}) and (\mathscr{D},\mathbb{S}) be tangent categories with

$$\mathbb{T} = (\mathsf{T}, \mathsf{p}, \mathsf{add}_{\mathbb{T}}, \mathsf{0}_{\mathbb{T}}, \ell_{\mathbb{T}}, c_{\mathbb{T}})$$

and

$$\mathbb{S} = (S, q, \mathsf{add}_{\mathbb{S}}, 0_{\mathbb{S}}, \ell_{\mathbb{S}}, c_{\mathbb{S}}).$$

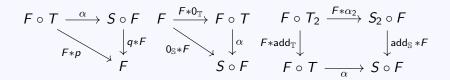
We say that a pair $(F, \alpha) : (\mathscr{C}, \mathbb{T}) \to (\mathscr{D}, \mathbb{S})$ is a tangent morphism if $F : \mathscr{C} \to \mathscr{D}$ is a functor, α is a natural transformation



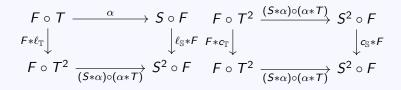
such that the diagrams:

The Tangent Category

Tangent Categories and Tangent Morphisms



and



commute. If α is a natural isomorphism then we say that (F, α) is a strong tangent morphism.

Geoff Vooys

We write **Tan** as the 1-category of tangent categories with tangent morphisms and \mathfrak{Tan} as the 2-category of tangent categories, tangent morphisms, and natural transformations.

Ind Tangent Categories

2023 June 8

< 1 k

æ

The Ind-Tangent Structure

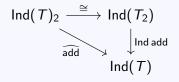
Fix a tangent category $(\mathscr{C}, \mathbb{T})$ and tangent structure $\mathbb{T} = (T, p, \text{add}, 0, \ell, c)$. Then we define $\text{Ind}(\mathbb{T})$ as:

$$\operatorname{Ind}(\mathbb{T}) = (\operatorname{Ind}(T), \operatorname{Ind}(p), \widehat{\operatorname{add}}, \hat{0}, \hat{\ell}, \hat{c}).$$

The functor Ind(T), the bundle map Ind(p), and the unit $\hat{0}$ are simply the Ind-pseudofunctor applied to T, p, and 0, respectively. But what about the rest?

The Ind-Addition

We can prove, using the equivalence of categories $\operatorname{Ind}(\mathscr{C}) \simeq \operatorname{Ind}_{PSh}(\mathscr{C})$, that there is an isomorphism of functors $\operatorname{Ind}(T)_2 \cong \operatorname{Ind}(T_2)$. The transformations $\widehat{\operatorname{add}}$ is then given by:

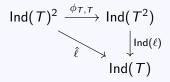


The Ind-Lift

To describe the ind-lift $\hat{\ell}$ we first note that because Ind(-) is a pseudofunctor the compositor gives a natural isomorphism

$$\phi_{\mathcal{T},\mathcal{T}}: \operatorname{Ind}(\mathcal{T})^2 \stackrel{\cong}{\Longrightarrow} \operatorname{Ind}(\mathcal{T}^2).$$

We define $\hat{\ell}$ as the composite:



Geoff	Vooys

The Ind-Flip

To describe \hat{c} : $Ind(T)^2 \Rightarrow Ind(T)^2$ we again need to use the compositor $\phi_{T,T}$. It is defined via the diagram:

$$\begin{array}{c|c} \operatorname{Ind}(T)^2 & \xrightarrow{\phi_{T,T}} & \operatorname{Ind}(T^2) \\ & \hat{c} & & & \downarrow \\ & \hat{c} & & & \downarrow \\ \operatorname{Ind}(C)^2 & \xleftarrow{\phi_{T,T}^{-1}} & \operatorname{Ind}(T^2) \end{array}$$

Ge		

Ind-Morphisms

Let $(\mathscr{C}, \mathbb{T})$ and $(\mathscr{D}, \mathbb{S})$ be tangent categories with a tangent morphism $(F, \alpha) : (\mathscr{C}, \mathbb{T}) \to (\mathscr{D}, \mathbb{S})$. Then there is a tangent morphism

 $(\mathsf{Ind}(F), \hat{\alpha}) : (\mathsf{Ind}(\mathscr{C}), \mathsf{Ind}(\mathbb{T})) \to (\mathsf{Ind}(\mathscr{D}), \mathsf{Ind}(\mathbb{S}))$

which is strong if and only if (F, α) is strong.

Defining $\hat{\alpha}$

The natural transformation $\hat{\alpha} : \operatorname{Ind}(F) \circ \operatorname{Ind}(T) \Rightarrow \operatorname{Ind}(S) \circ \operatorname{Ind}(F)$ is defined via the diagram:

$$\begin{array}{c|c} \operatorname{Ind}(F) \circ \operatorname{Ind}(T) \xrightarrow{\phi_{T,F}} \operatorname{Ind}(F \circ T) \\ & & & & \downarrow \\ & & & \downarrow \\ & & & \downarrow \\ \operatorname{Ind}(S) \circ \operatorname{Ind}(F) \xleftarrow{\phi_{F,S}^{-1}} \operatorname{Ind}(S \circ F) \end{array}$$

Geoff	Voovs	
GCON	•00y2	i

8/10

Sketch of the strength.

First if $\hat{\alpha}$ is strong, it is strong on every constant object $(X) \iff X : \mathbb{1} \to \mathscr{C}$ and so $\hat{\alpha} = \phi_{F,S}^{-1} \circ \alpha_X \circ \phi_{T,F}$ is an isomorphism. Since the ϕ are isomorphisms, we get that α_X is an isomorphism for any X. If on the other hand α is a natural isomorphism, then $\operatorname{Ind}(\alpha)$ is an isomorphism as well. It is then immediate that $\hat{\alpha} = \phi_{F,S}^{-1} \circ \operatorname{Ind}(\alpha) \circ \phi_{T,F}$ is an isomorphism.

Bibliography

[1] M. Artin, A. Grothendieck, and J.-L. Verdier, *Séminar de géométrie algébrique du Bois Marie 4: Théorie des topos et cohomologie étale des schémas.* 1963–1964, coll. Lecture Notes in Mathematics (269, 270, 305), 1972/3

[2] J. R. B. Cockett and G. S. H. Cruttwell, *Differential structure, tangent structure, and SDG*, Appl. Categ. Structures 22 (2014), no. 2, 331–417.
[3] G. S. H. Cruttwell and J.-S. P. Lemay, Differential bundles in commutative algebra and algebraic geometry, 2023, Available at https://arxiv.org/abs/2301.05542.

The End

Thanks for coming and listening everybody!

Geoff Vooys

æ